• 제목/요약/키워드: Power Turbine

검색결과 2,628건 처리시간 0.025초

조력발전용 수차발전기의 기동·정지시스템에 관한 연구 (A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant)

  • 오민환;박철원
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.

가스 터빈 복합화력 발전 플랜트의 시스템 구성 제안 - CO2 포집 대안 별 비교 평가 (System Configuration Studies on Gas Turbine Combined Cycle Power Plants - Application to Processes for Carbon Capture System)

  • 김승진;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.15-17
    • /
    • 2013
  • In the design of combined cycle power plants, the design parameters considered mainly could be changed and added for performance evaluation with change on the design objective and method. Therefore, the design criteria considering the different objectives and type of power plant were needed. Thermodynamic and economic analyses of various types of gas turbine combined cycle power plants with demand on generation of power and heat and carbon capture system from high pressure flue gas have been performed to establish criteria for optimization of power plants.

  • PDF

조력발전 운영을 위한 최대 발전량 산정 모델개발 (The Development of Model to Calculate Maximum Power for Tidal Power Plant Operation)

  • 오민환;김활수;김재훈;송규석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.505-508
    • /
    • 2006
  • Recently, concern for tidal power is being increased by newly recycled energy. It is important to decide on the maximum power estimate operation and it's stop by applying the difference of water level between tide level and artificial reservoir for the administration of tidal development. For maximum output of power through turbine generator, administrative variables and process on efficiency of hydraulic turbine and inflow discharge of reservoir is quite complicated because it is run through the connection of discharge-gate and turbine On the development of this model, the administrative process is decided, Operation block is presented for it's maximum power estimate.

  • PDF

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

농촌 그린빌리지 계획을 위한 풍력에너지 자원분석 (Assessment of Wind Power Resources for Rural Green-village Planning)

  • 남상운;김대식
    • 농촌계획
    • /
    • 제14권2호
    • /
    • pp.25-32
    • /
    • 2008
  • Wind energy, which is one of renewable energy, would be useful resources that can be applied to making energy recycling villages without using fossil fuels. This study analyzed energy potential on wind power considering weather condition in three rural villages and compared with energy consumption surveyed. A wind turbine system in the 5kW class can generate 26.1%, 73.9% and 39.5% of the yearly mean consumption of electric power per house in Makhyun, Boojang and Soso respectively. A 750kW wind turbine system can generate 1.7%, 30.3% and 22.1% of the total amount of electric power consumption in three study villages respectively. Wind power energy density was too low in Makhyun and Soso, so it is determined that the application of wind turbine system is almost impossible. Wind energy potential was generally low in Boojang either, but it is evaluated that there is a little possibility of wind power generation relatively. For practical application of renewable energy to rural green-village planning, assessment of energy potential for the local area should be preceded.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권1호
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Robust Observer Design for an Isolated Power System with Model Uncertainty using H-Norm

  • Goya, Tomonori;Senjyu, Tomonobu;Omine, Eitaro;Yona, Atsushi;Urasaki, Naomitsu;Funabashi, Toshihisa
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.498-504
    • /
    • 2010
  • The output power fluctuations of renewable energy power plants such as wind turbine generators and photovoltaic systems result in frequency deviations and terminal voltage fluctuations. Furthermore, these power fluctuations also affect the turbine shaftings of diesel generators and gas-turbine generators which are the main power generation systems on isolated islands. Therefore, it is important to achieve torsional torque suppression. Since the measurement of torsional torque is technically difficult, and there is an uncertainty in the mechanical constants of the shaft torsional system. This paper presents an estimation system that estimates torsional torque by using a developed $H_{\infty}$ observer. In addition to the above functions, the proposed shaft torque observer incorporates a parameter identification system that aims to improve the estimation accuracy. The simulation results validate the effectiveness of the proposed $H_{\infty}$ observer and the parameter identification.

Critical Short Circuit Ratio Analysis on DFIG Wind Farm with Vector Power Control and Synchronized Control

  • Hong, Min;Xin, Huanhai;Liu, Weidong;Xu, Qian;Zheng, Taiying;Gan, Deqiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.320-328
    • /
    • 2016
  • The introduction of renewable energy sources into the AC grid can change and weaken the strength of the grid, which will in turn affect the stability and robustness of the doubly-fed induction generator (DFIG) wind farm. When integrated with weak grids, the DFIG wind turbine with vector power control often suffers from poor performance and robustness, while the DFIG wind turbine with synchronized control provides better stability. This paper investigates the critical short circuit ratios of DFIG wind turbine with vector power control and synchronized control, to analyze the stability boundary of the DFIG wind turbine. Frequency domain methods based on sensitivity and complementary sensitivity of transfer matrix are used to investigate the stability boundary conditions. The critical capacity of DFIG wind farm with conventional vector power control at a certain point of common coupling (PCC) is obtained and is further increased by employing synchronized control properly. The stability boundary is validated by electromagnetic transient simulation of an offshore wind farm connected to a real regional grid.

가스터빈 동기기 통합형 기동 및 여자시스템 개발 (Development of Integrated Start-up and Excitation System for Gas Turbine Synchronous Generator)

  • 류호선;차한주
    • 전기학회논문지P
    • /
    • 제63권3호
    • /
    • pp.183-188
    • /
    • 2014
  • Power conversion systems used in large gas turbine power plant can be divided into two main part. Because of the initial start-up characteristic of the gas turbine combustor, the gas turbine must be accelerated by starting device(LCI : Load Commutated Inverter) up to 10%~20% of rated speed to ignite it. In addition, the ECS(Excitation Control system) is used to control the rotor field current and reactive power in grid-connected synchronous generator. These two large power conversion systems are located in the same space(container) because of coordination control. Recently, many manufactures develop high speed controller based on function block available in the LCI and ECS with the newest power semiconductor. We also developed high speed controller based on function block to be using these two system and it meets the international standard IEC61131 as using real-time OS(VxWorks) and ISaGRAF. In order to install easily these systems at power plant, main controller, special module and IO module are used with high speed communication line other than electric wire line. Before initial product is installed on the site, prototype is produced and tests are conducted for it. The performance results of Integrated controller and application program(SFC, ECS) were described in this paper. The test results will be considered as the important resources for the application in future.

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A fuzzy logic Controller design for Maximum Power Extraction of variable speed Wind Energy Conversion System)

  • 김재곤;김병륜;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2307-2309
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

  • PDF