• 제목/요약/키워드: Power Transformer Fault

검색결과 260건 처리시간 0.026초

상용변압기와 결합된 초전도체 및 상전도체 한류기의 고장전류 및 보호기기 동작특성 (Characteristics of the Fault Current and the Protection for Superconducting and Normal Conducting Limiter combined with a Transformer)

  • 임인규;최효상;정병익
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1313-1317
    • /
    • 2013
  • With increasing demand of power, the equipment of power system is enlarging and the absolute capacity is going up. As a result, when a fault occurs, the fault current is consistently increasing. Therefore, I suggested some solution for limiting the fault current more efficiently. This study shows the characteristics of superconducting limiting elements and normal conducting elements combined with a transformer. We performed a short-circuit test about the fault current by using SCR switching control system operated from a CT. When short circuit accidents happened in the secondary side of a transformer, fault currents flowed and a SCR switching control system was operated. It resulted in a decrease of the fault current in the limited elements of third winding connected in parallel. For this test, we used YBCO thin films and normal conducting elements as the limited elements. Within a cycle, a superconducting fault current limiter with YBCO thin films reduced more than 90% of fault current because the resistance of superconducting elements sustainedly grew. On the other hand, the limiter with normal conductors limited as much as a set value because its resistance characteristic was linear. Consequently, in case of the limiter with superconductor, limiting range of the circuit was wide but the range of protective detection was undefined. In contrast, as for the limiter with normal conductors, limiting range and protection duty were appropriate.

초전도 한류기를 주변압기 접지선에 설치시 배전계통의 순간전압품질 분석 (Voltage Quality Analysis in Power Distribution System with Superconducting Fault Current Limiter at Grounding Line)

  • 문종필
    • 전기학회논문지P
    • /
    • 제62권4호
    • /
    • pp.159-163
    • /
    • 2013
  • In this paper, voltage quality improvement is analyzed in case of Superconducting Fault Current Limiter (SFCL) installed in grounding line of main transformer in power distribution system. First, a resistive-type SFCL model is used. Next, Korean power distribution system is modeled. Finally, when SFCL is installed in the starting point of feeder and grounding line of main transformer, voltage qualities are evaluated according to various fault locations and resistance values of SFCL using PSCAD/EMTDC. The voltage quality results in case of grounding line are compared with the voltage in case of feeder.

MTR 중성점 접지에 초전도 전류제한기 적용시 지락과전류계전기 동작 분석 (Analysis on the Protective Coordination on Neutral Line of Main Transformer in Power Distribution Substation with Superconducting Fault Current Limiter)

  • 김진석;임성훈;문종필;김재철;현옥배
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2089-2094
    • /
    • 2009
  • The fault current has increased due to growth of distributed generations for the large power demand in power distribution system. To solve some problem such as excess of the circuit breaker's cut-off ratings, the superconducting fault current limiter(SFCL) has been progressed. However, the operational characteristics of the relay is changed by SFCL. Therefore, the proper impedance for the SFCL should be selected to keep protective coordination with the SFCL when SFCL is introduced on the neutral line of main transformer in distribution system. In this paper, the proper normal conducting resistance was suggested to solve the problem in case of the protection coordination with SFCL.

전력용 변압기 보호용 시제품 IED 설계와 개선된 기법의 시험 (Testing of Advanced Relaying and Design of Prototype IED for Power Transformer Protection)

  • 박철원;신명철
    • 전기학회논문지P
    • /
    • 제55권1호
    • /
    • pp.6-12
    • /
    • 2006
  • A popular method used by primary protection for power transformer is current ratio differential relaying (RDR) with 2nd harmonic restraints. In modern power transformer due to the use of low-loss amorphous material, the 2nd harmonic component during inrush is significantly reduced. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the 2nd harmonic component during internal fault. Thus the conventional method may not operate properly. This paper proposes an advanced relaying algorithm and the prototype IED hardware design and it's real-time experimental results. To evaluate performance of the proposed algorithm, the study is well constructed power system model including power transformer utilizing the EMTP software and the testing is made through simulation of various cases. The proposed relaying that is well constructed using DSP chip and microprocessor etc. has been developed and the prototype IED has been verified through on-line testing. The results show that an advanced relaying based prototype IED never mis-operated and correctly identified all the faults and that inrushes that are applied.

데이터마이닝 기법을 이용한 주상변압기 고장유형 분석 및 복구 예측모델 구축에 관한 연구 (Fault Pattern Analysis and Restoration Prediction Model Construction of Pole Transformer Using Data Mining Technique)

  • 황우현;김자희;장완성;홍정식;한득수
    • 전기학회논문지
    • /
    • 제57권9호
    • /
    • pp.1507-1515
    • /
    • 2008
  • It is essential for electric power companies to have a quick restoration system of the faulted pole transformers which occupy most of transformers to supply stable electricity. However, it takes too much time to restore it when a transformer is out of order suddenly because we now count on operator in investigating causes of failure and making decision of recovery methods. This paper presents the concept of 'Fault pattern analysis and Restoration prediction model using Data mining techniques’, which is based on accumulated fault record of pole transformers in the past. For this, it also suggests external and internal causes of fault which influence the fault pattern of pole transformers. It is expected that we can reduce not only defects in manufacturing procedure by upgrading quality but also the time of predicting fault patterns and recovering when faults occur by using the result.

뉴로-퍼지를 이용한 변압기 보호계전 알고리즘 (Protective Relaying Algorithm for Transformer Using Neuro-Fuzzy)

  • 이명윤;이종범;서재호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권12호
    • /
    • pp.722-730
    • /
    • 2003
  • Current differential relay is commonly used to protect power transformer. However, current differential relay will be tripod by judging like internal fault during inrush occurring in transformer. To resolve such problem, this paper proposes a new protective relaying algorithm using Neuro-Fuzzy Inference. A variety of transformer transition states are simulated by BCTRAN and HYSDT of EMTP. Primary phase voltage and differential current are obtained from simulation. The target data which are used in Neuro-Fuzzy algorithm are obtained from transformed primary voltage and current. Then, these are trained by Neuro-Fuzzy algorithm. The trained Neuro-Fuzzy algorithm correctly distinguishes whether internal fault occurs or not, within 1/2 cycle after fault. Accordingly, it is evaluated that the proposed algorithm has good relaying characteristics.

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

전력용 변압기용 자속-차전류 기울기 특성에 의한 개선된 보호계전 알고리즘 (Advanced Protective Relaying Algorithm by Flux-Differential Current Slope Characteristic for Power Transformer)

  • 박철원;신명철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권7호
    • /
    • pp.382-388
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of power transformers is current percentage differential relaying(PDR). However, the harmonic components could be decreased by magnetizing inrush when there have been changes to the material of iron core or its design methodology. The higher the capacitance of high voltage status and underground distribution, the more differential current includes the second harmonic component during occurrence of an internal fault. Therefore, the conventional harmonic restraint methods need modification. This paper proposes an advanced protective relaying algorithm by fluxt-differential current slope characteristic and trend of voltage and differential current. To evaluate the performance of proposed algorithm, we have made comparative studies of PDR fuzzy relaying, and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP99, and data collection is made through simulation of various internal faults and inrush. As the results of test. the new proposed algorithm was proven to be faster and more reliable.

스코트 변압기 보호계전기 오동작 사례분석 및 개선방안 고찰 (A Study on SCOTT Transformer Protection Relay Malfunction Case and Improvement Methodology)

  • 이종화;노영환
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.394-399
    • /
    • 2017
  • 본 국내 교류전철변전소에서는 주변압기 2차측의 위상각이 $90^{\circ}$인 단상 전원을 얻도록 한 스코트 결선 변압기를 설치 운용 하고 있다. 변압기 보호계전기는 내부에서 고장이 발생하는 경우 변압기 전단에서 전력을 차단시키고 변압기 외부 계통의 사고나 일반차량 운행의 경우에는 동작하지 않아야 한다. 정확한 고장의 판단으로 오동작을 줄이는 것이 전력계통을 안정적으로 유지하고 신뢰성을 향상시키는 측면에서 매우 중요하다. 주 변압기 내부 고장 검출장치로는 브흐홀쯔계전기와 비율차동계전기를 설치하여 변압기를 보호하고 있지만 비율차동계전기의 오동작으로 인해 보호기능을 비활성화 시켜놓은 상태로 운용하는 사례가 있다. 본 논문에서는 스코트 변압기의 특성과 비율차동계전기의 특성을 제시하고 보호계전기의 오동작 사례를 분석하였다. 이를 위해 전력계통 해석프로그램을 이용하여 스코트 변압기에 사용되는 비율차동계전기를 모델링하고 A변전소의 Comtrade 파일로 저장된 고장파형을 입력데이터로 사용하여 동작여부를 판단하여 고조파 분석을 수행하였다. 또한, 고장파형 분석을 통해 오동작 사례에 대한 개선 방안을 도출하고자 한다.

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권4호
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.