• Title/Summary/Keyword: Power Transformer Fault

Search Result 260, Processing Time 0.028 seconds

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

Development of Fault Detection Method for a Transformer Using Neural Network (신경회로망을 이용한 변압기 사고 검출 기법 개발)

  • 김일남;김남호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.43-50
    • /
    • 2003
  • This presents a fault detecting method for a power transformer based upon a neural network. To maintain a normal relay operating conditions, external winding faults of a power transformer and magnetic inrush have been tested under consideration of the EMTP/ATP software and internal faults of power transformer have been tested by the EMTP/BCTRAN software. The neural network has been evaluated by the proposed fault. Input variables of the neural network for the proposed model can be obtained from fundamental currents, restraining and operating currents. This algorithm uses back-propagation and the ratio of a restraining current and an operating current as relay input parameters. The ratio may enhance the fault detection since the restraining currents increase rapidly at external faults. The proposed detecting method has been applied to the practical relay systems for transformer protection. As a result, the proposed detecting method based on the neural network has been shown to have better characteristics.

Future New Distribution System with Low voltage and Mass Capacity using HTS equipments (초전도기기를 적용한 미래 저압대용량 신 배전계통)

  • Yoon Jae Young;Kim Jong Yul;Lee Seung Ryul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • This paper describes the construction scheme of new distribution system using HTS(High Temperature Superconducting) power equipments such as cable, transformer and FCL(fault current limiter). At present, one of the most serious problems in distribution power system, especially for metropolitan complex city, is to obtain the ROW for cable line routes, space for downtown substations and satisfy the environmental protection caused by NIMBY phenomena. Unfortunately, it is expected that this situation will get more and more worse. As the HTS technology to apply in power system Is developed, HTS cable utilizing mass-capacity characteristic can be a useful countermeasure to overcome this problem. This paper describes the application methodology of 22.9kV HTS cable with low-voltage, mass-capacity characteristics replacing the 154kV conventional cable. By applying 22.9kV HTS cable, the HTS transformer with higher capacity for the reduction of space and transformer numbers of downtown substation is necessary. Also, if the leakage Impedance of HTS transformer is same as or lower than that of conventional transformer, the fault current of 22.9kV bus will increase because the HTS transformer capacity is larger than that of the conventional transformer. This means the parallel application of HTS-FCL to reduce the fault current in addition to the HTS cable and transformer can be necessary. With the basic construction scheme of new distribution system, this paper describes the future study points to realize this new distribution system using HTS equipments.

Dynamic Performance Test of Power Transformer Protective Relay using 345kV Transformer Modelling of PSCAD/RTDS (PSCAD/RTDS에서 345kV 변압기 모델링을 통한 변압기용 보호계전기의 동특성 시험)

  • Kwon, Gi-Baek;Kim, Cjul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.120-123
    • /
    • 2005
  • This paper, for the establishment of power system models and test procedures for the dynamic performance test of transformer protective relay, presents power system model, environment establishement between RTDS and protective relay, and the dynamic performance test generated internal fault or external fault.

  • PDF

An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation (154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향)

  • Cho, Seong-Soo;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

Improvement in Transformer Diagnosis by DGA using Fuzzy Logic

  • Dhote, Nitin K.;Helonde, J.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.615-621
    • /
    • 2014
  • Power transformer is one of the most important equipments in electrical power system. The detection of certain gases generated in transformer is the first indication of a malfunction that may lead to failure if not detected. Dissolved gas analysis (DGA) of transformer oil has been one of the most reliable techniques to detect the incipient faults. Many conventional DGA methods have been developed to interpret DGA results obtained from gas chromatography. Although these methods are widely used in the world, they sometimes fail to diagnose, especially when DGA results falls outside conventional method codes or when more than one fault exist in transformer. To overcome these limitations, fuzzy inference system (FIS) is proposed. 250 different cases are used to test the accuracy of various DGA methods in interpreting the transformer condition.

A Study of the Preventive Diagnostic Algorithm of Gas Analysis in Oil for Power Transformer (가스분석을 이용한 전력용 변압기 이상진단 연구)

  • Choi, I.H.;Kweon, D.J.;Jung, G.J.;You, Y.P.;Sun, J.H.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1676-1678
    • /
    • 2001
  • In general, power demand is on an increasing trend as industries have made rapid strides. Power transformer is the most important equipment in substation for this reason. Transformer trobles go with blackout, expensive repair costs and huge economic losses. Therefore it is important to find the quick detection of incipient fault for the least losses. There have been gas, partial discharge, temperature, OLTC, fan and pump diagnosis for preventive techniques by present. Specially gas analysis has been adapted for a long time and proved as confident method. In this paper, we analysed the fault causes of used power transformer. The insulation faults was occupied 40% of inquired 152 faults from 1991 to 2000. This study presents the developed algorithm and expert system for finding abnormal status within transformer. We used the Element Expert tool developed Neuron DATA Inc.

  • PDF

Electric Power Characteristics of a SFCL based on Turn-ratio of 3-Phase Transformer (3상 변압기의 권수비에 따른 초전도 한류기의 전력특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.414-417
    • /
    • 2014
  • At present, the demand for electric power increases, the electric power system is complicated. The size of the line-to-ground fault and the line-to-line fault occurred with complication of electric power system continue to increase, therefore several issues are raised. To address these issues effectively, the superconducting fault current limiter (SFCL) has been proposed, this study is ongoing. In this paper, we applied the SFCL in three-phase transformer and comparative analysis of the electric power burden to the SFCL. The superconductor is combined to the third winding of transformers in connection structure. In case of a third line-to-line fault, we did comparative analysis of the electric power burden to the SFCL based on the turn ratio of transformer third winding. In this case, we could confirm as the third turn ratio increased, electric power impressed to the superconducting element increased.

Transient Characteristics of a Transformer Type SFCL Applying the Superconductor and the Normal-conductor into the Secondary Winding (초전도체 및 상전도체의 변압기 2차측 적용에 따른 변압기형 SFCL 특성 비교)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.873-877
    • /
    • 2016
  • This paper proposed the structure that applied superconductors to the neutral line of a transformer and applied the normal conductors to the third line. The superconductor applied to the neutral line of a transformer limited the peak value of initial fault current, while the normal conductor finally limited the fault current. In order to secure the operating reliability of transformer type Superconducting Fault Current Limiter (SFCL) of previously proposed structure, we analyzed the operating characteristics according to the fault types. We tested a line-to-ground fault and a line-to-line fault. As a result of the experiment, all the faults showed that the superconductor stably limited the peak-value of initial fault current. Also, the normal conductor finally limited the fault current. Based on this research results, We thought that if the structure of inserting superconductor into the neutral line is applied to the real system, it could improve the reliability and stability of the power system.

Evaluation of Damage from Reclosing Scheme for Power Transfromer (재폐로방식이 전력용 변압기에 미치는 영향 평가)

  • O, Jeong-Hwan;Yun, Sang-Yun;Im, Seong-Jeong;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.177-183
    • /
    • 1999
  • This paper presents how to evaluate the transformer damage caused by reclosing scheme at the distribution substation. We describe a quantitative relationship between the reclosing scheme and the number of fault current flowing through transformer wsing the probability of a reclosing success/failure. The transformer damage from reclosing scheme is presented using a weight function and a damage function. A weight function is associated with the number of reclosing attempts and the reclosing deadtime to consider cumulative stress caused by reclosing scheme. A damage function is associated with a transformer impact ratio and a transformer functional life. In the case study, the transformer damage is simulated for the probability of a reclosing success. And the evaluation of transformer damage using KEPCO's operation data is performed.

  • PDF