• Title/Summary/Keyword: Power System for the Ocean

Search Result 650, Processing Time 0.031 seconds

Exploration of power take off in wave energy converters with two-body interaction

  • Wang, Hao;Sitanggang, Khairil;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-106
    • /
    • 2017
  • The study explores a novel design of wave energy converter (WEC) that utilizes the interaction between an inside heaving vertical cylinder with an outside fixed hollow cylinder. This design originates from the oscillating water column (OWC) type WEC but replaces the pneumatic power take off (PTO) through the Wells turbine with the hydrodynamic PTO through the inside heaving cylinder. To effectively evaluate the maximum power output, the system has been modeled in the hydrodynamic software AQWA (developed by ANSYS Inc) that has accumulated extensive offshore industry users. Ranges of the PTO parameters have been examined to make sure that proper linear damping can be implemented to simulate the PTO force. Comparing the efficiency of the pneumatic PTO with the hydrodynamic PTO, it appears that the hydrodynamic PTO is more promising than the traditional Wells turbine for an OWC system.

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector (증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hyeon-Uk;Ha, Soo-Jung;Lee, Ho-Saeng;Kim, Hyun-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

  • Kweon, Hyuck-Min;Cho, Hong-Yeon;Cho, II-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.813-825
    • /
    • 2014
  • To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

The heavy load control of ship's battery connected power management system (배터리 연계형 선박 전력관리시스템의 중부하 제어)

  • Kang, Young-Min;Jang, Jae-Hee;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1455-1463
    • /
    • 2017
  • Global economy has recorded low growth, low consumption, high unemployment rate, high risk, short boom and long recession. As a result, maritime economy declines and the reduction of maintenance costs is inevitable. Thus, Studies such as green ship, eco ship, and smart ship are being actively conducted to save energy of ship. Power management system that use batteries in green ship is an important research area. In this paper, we analyze the heavy load control of a power management system of a general ship using only a generator, and study a heavy load control algorithm for a battery connected power management system. To study this, a structure of battery connected power management system is proposed and a battery connected power simulator was constructed based on the proposed system. Through the simulator, the operation of the battery according to the heavy load control is defined and confirmed in the battery connected power management system.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Design of Web-based Ocean Forwarder Information System for Freight Forwarder (복합운송주선업을 위한 Web기반의 해운 포워더정보시스템 설계)

  • 박상민;임세희;변상규;유우식;채진석;심동석
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.81-96
    • /
    • 2004
  • Globalization of Economic activities have increased Company's interests about International Logistics Management. Expansion of International trade depends on International Logistics which can overcome distance and time. In In-cheon, There are many small scale and minor Freight Forwarders take advantage of being linked with a port, an airport but their inefficient paper works cause raising of Logistics costs and losing of competitive power. In this study, we design a web based ocean forwarder information system for freight forwarder to solve these problems. So, this system will provide decreasing operation time, human resources, and accessing easily because of web based system, and finally decrease logistics cost and improve national competitive power.

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.