• Title/Summary/Keyword: Power System Oscillation

Search Result 249, Processing Time 0.026 seconds

On-line Estimation of Low Frequency Osillation Mode Using Prony Analysis in the Power System (PRONY 해석을 사용한 전력계통 저주파 전동모드의 온라인 추정)

  • Lee, K.Y.;Shim, K.S.;Nam, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.167-170
    • /
    • 2002
  • This paper presents a mode estimation for the analysis of small signal stability in power system. The low frequency oscillation mode estimation is based on Prony method that is able to accurately compute the modal parameters (frequency and damping) of oscillation mode from time series. The time series or time domain data is obtained in TSA process. The method applied to a large scale power systems and compared on the eigenanalysis results.

  • PDF

Development of Battery Type Powered Handpiece Drive System for Surgical Operation (Battery type 외과수술용 핸드피스 구동 드라이브 시스템)

  • Ha, Jung-Jun;Yoon, Yong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.388-394
    • /
    • 2008
  • The purpose of this paper is concerned with a battery type powered handpiece drive system for surgical operation. Battery type powered surgical handpiece is suitable for delicate surgical operating. The conventional air-type handpiece has a mechanical noise, a strong oscillation and a danger of infection. And the conventional contact switching type handpiece has problems that is restricted by surroundings. By reason of this kind, we studied noncontact switching type surgical handpiece to change conventional air type surgical handpiece and contact switching type. Also in this paper we develop the battery type power handpiece drive system for surgical operation using controller IC UC3625 of UNITRODE CO. Finally some experimental and simulation results are provided to demonstrate the validity of the proposed battery type power handpiece drive system.

Analysis and Control of Low Frequency Oscillation using TCSC Small Signal Model by Control of Firing Angles (TCSC의 소신호 모형을 이용한 점호각 제어에 의한 저주파 진동 감쇠 효과 해석 및 제어)

  • Kim, Tae-Hyun;Seo, Jang-Cheol;Park, Jong-Keun;Moon, Seung-Ill;Han, Byung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.120-124
    • /
    • 1995
  • TCSC can not only increase power flow but also damp low frequency oscillation by controlling firing angles of thyristors. But, a model considering voltage, current firing angles is not derived. This paper used a small signal model considirng these variables which was derived in paper [1]. TCSC model is combined with swing equation. Being related to rotor angles and firing angles of thyristors, current and synchronizing torque coefficient is reformulated. Because firing angles of thyristors can be controlled only twice within one period, swing equation is transformed to discrete time model. It is shown that low frequency oscillation can be damped by controlling firing angles in one machine infinite bus power system.

  • PDF

Dynamic Modeling of the Free Piston Stirling Pump for the Passive Safety Injection of the Next Generation Nuclear Power Plant (차세대 신형원자로의 피동형 안전 주입장치를 위한 프리피스톤 스터링 펌프의 동특성 모델)

  • Lee, Jae-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.149-154
    • /
    • 1999
  • This paper describes a passive safety injection system with free piston Stirling pump working withabundant decay heat in the nuclear reactor during the hypothetical accident. The water column in the tube assembly connected from the hot chamber to the cold chamber in the pump oscillates periodically due to thermal volume changes of non-condensable gas in each chamber. The oscillating pressure in the water column is converted into the pumping power with a suction-and-bleed type valve assembly. In this paper a dynamic model describing the frequency of oscillation and pumping pressure is developed. It was found that the pumping pressure is a function of the temperature difference between the chambers. Also, the frequency oscillation depends on the length of the tube with water column.

  • PDF

The Effects of Moxibustion on Heart Rate Variability in Cancer Patients (쑥뜸치료가 암환자의 심박변이도에 미치는 영향)

  • Kim, Ok-Hee;Choi, Jung-Eun;Yoon, Jeung-Won;Yoo, Hwa-Seung
    • Journal of Korean Traditional Oncology
    • /
    • v.16 no.1
    • /
    • pp.15-31
    • /
    • 2011
  • Objective : The study aims to investigate the effect of moxibustion treatments on autonomic nervous system function of cancer patients through the evaluation of heart rate variability (HRV) biofeedback testing. Materials and Methods : Six cancer patients from inpatient care unit of Dunsan Oriental Hospital, Daejeon University were given three moxibustion treatment sessions every other day over one week period on five Oriental Medicine meridian points CV4, CV6, CV12, KD1, and PC8. HRV biofeedback was conducted before and after each treatment sessions. Three areas of analyses were done from the test conducted; Time Domain Analysis, Frequency Domain Analysis and Autonomic Nervous System (ANS) balance analysis. Results : Time Domain Analysis has shown increased Standard Deviation of all Normal R-R Intervals (SDNN), and decreased Mean Heart Rate and Physical Stress Index (PSI) levels, with statistical significance (P<0.05). In Frequency Domain Analysis, series of moxa treatments have increased Total Power (TP), Very Low Frequency Oscillation Power (VLF), High Frequency Oscillation Power (HF), normalized HF values while decreasing Low Frequency Oscillation Power (LF), normalized LF and LF/HF ratio with statistical significance (P<0.05). The values of ANS activity, ANS balance, Stress resistance, Stress index, have also shown significant changes. For cardiac stability stroke volume power (SP) and Blood Vessel Tension (BVT) were followed, which were both increased after treatment. All changes were statistically significant (P<0.05). Conclusion : The results have shown a positive correlation between the moxibustion treatments and autonomic nervous system responses on cancer patients through the HRV biofeedback testing. This study suggests possible application of moxibustion treatments for managing ANS functions of cancer patients, although additional studies with larger population are necessary to confirm the data.

Analysis of Oscillation Modes in Discrete Power Systems Including GTO Controlled STATCOM by the RCF Method (GTO 제어 STATCOM을 포함하는 이산 전력시스템의 RCF 해석법에 의한 진동모드 해석)

  • Kim, Deok-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.829-833
    • /
    • 2007
  • In this paper, the RCF method is applied to analyze small signal stability of power systems including GTO controlled parallel FACTS equipments such as STATCOM. To apply the RCF method in power system small signal stability problems, state transition equations of generator, controllers and STATCOM are presented. In eigenvalue analysis of power systems, STATCOM is modelled as the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching devices such as STATCOM.

A Study on Low Frequency Oscillations in Electric Power Systems. (전력계통의 저주파진동현상해석에 관한 연구)

  • Song, Kil-Yeong;Kwon, Sae-Hyuk;Chang, Bang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.870-873
    • /
    • 1988
  • AESOPS computer program is designed to find those eigenvalues of a linear dynamic system model which most strongly characterize oscillations between generator rotors. The low frequency oscillation actually occurred in October, 1986 in Korean Electric Power Corporation (KEPCO) System. 28 oscillation modes are identified through computer runs and two of them are calculated unstable in the case of the start of a pumped-storage unit. This program is considered to complement the conventional PSS/E stability program for the stability study of KEPCO system.

  • PDF

Eigenvalue sensitivity analysis of discrete system based on the RCF method (이산시스템에서 RCF 해석법에 기초한 감도해석)

  • Kim, Deok-Young;Park, Sung-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.602-603
    • /
    • 2007
  • In this paper, the RCF method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems by the RCF method are presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is very powerful to calculate the newly generated unstable oscillation modes precisely after periodic switching operations of SVC. Also the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of dominant oscillation modes after periodic switching operations. These simulation results are very different from those of the conventional continuous system analysis method such as the state space equation method.

  • PDF

Enhancement of Power System Stability using Flywheel Energy Storage System (플라이휠 에너지 저장장치를 이용한 전력계통의 안정도 향상)

  • Lee, Jeong-Phil;Han, Snag-Chul;Han, Young-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.79.2-79.2
    • /
    • 2011
  • 플라이 휠 에너지 저장장치(Flywheel Energy Storage System: FESS)는 전기 에너지를 회전 운동 에너지로 저장하였다가 필요시 회전 운동에너지를 전기 에너지로 변환하여 재사용 가능한 에너지 저장장치 이다. 최근 전력 변환 기술의 발전으로 인하여 플라이휠 에너지 저장 장치의 에너지 입출력 속도가 빨라지고 대용량의 에너지를 저장할 수 있게 되었다. 본 논문에서는 이러한 플라이휠 에너지 저장 장치의 전력 입출력 특성을 이용하여 전력 시스템에서 발생하는 저주파 진동(Low frequency oscillation)을 억제하는 방안을 제시 하여 안정도를 향상 시키고자 하였다. 전력 시스템은 발전조건, 전송조건, 부하조건에 따라 동작 조건이 지속적으로 변하고 있다. 이러한 동작 환경 변화는 전력 시스템에 대한 수학적인 표현과 실제 전력계통간의 차이가 발생하기 때문에 정확한 제어 목적을 달성하기가 힘들다. 따라서 본 논문에서는 제어기 설계 단계에서 전력 계통의 불확실성을 고려할 수 있는 $H_{\infty}$ 제어 기법을 이용하여 플라이휠 에너지 저장장치를 위한 강인 제어기를 설계 하였다. 제안한 플라이휠 에너지 저장장치의 강인 제어기의 유용성을 입증하기 위하여 1기 무한대 모선에 적용한 결과를 비선형 시뮬레이션을 통하여 다양한 외란이 발생한 경우에 외란 억제 성능과 강인성에 대하여 고찰 하였으며, 제안한 방식이 기존의 전력계통 안정화 장치(Power system stabilizer: PSS) 보다 효율적이며 전력계통의 안정도 향상에 크게 기여함을 보이고자 하였다.

  • PDF

A Study on the Appropriate Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기의 적정 파라메터 선정에 관한 연구)

  • 김경철;문병희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.45-53
    • /
    • 2002
  • This paper presents an algorithm for the appropriate parameter selection of a power system stabilizer and power converters in two-area power systems with a series HVDC links. The method for PSS is one of the classical techniques by allocating properly poly-zero positions to fit as closely as desired the ideal phase lead and by changing the gain to produce a necessary damping torque. Proper parameter of power converters are obtained in order to have sufficient speed and stability margin to cope with changing reference values and disturbances based on the Root-locus technique. The small signal and transient stability studies using the PSS and power converters parameters obtained from these methods show that a natural oscillation frequency of the study case system is adequately damped. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.