• Title/Summary/Keyword: Power Substation

Search Result 626, Processing Time 0.04 seconds

The Preventing and Diagnosis of Ultra High Voltage Substation Devices and Combination with An Automation System of A Substation (초고압 변전기기의 예방진단 및 종합 자동화)

  • Yang, Hang-Jun;Kim, Kyung-Geun;Kim, Sung-Sik;You, Jeong-Sik;Kim, Hong-Suk;Lee, Hahk-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.275-277
    • /
    • 2001
  • In this paper a preventative and diagnostic system for high and ultra high voltage electric power transmission apparatus is proposed to secure substation normal operation. The proposed system consists of monitoring sub-system and diagnostic sub-system, which are mainly for GIS and main transformer, and the system will be applied for newly established 765kV class substation in Korea. Some guideline for combination with substation control system are presented, and engineering solution as an improved substation automation system is also proposed.

  • PDF

A Study on the Load Flow Program for 765[㎸] Substation Simulator (765[㎸] 변전소 시뮬레이터를 위한 조류계산 프로그램에 관한 연구)

  • 여상민;김철환;이종포
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.4
    • /
    • pp.201-206
    • /
    • 2003
  • Power system is analyzed by three methods of load flow, fault calculation, and voltage stability. Among there, load flow is calculated to flow of power in power in system at steady state. But, load flow is difficult to analyze to flow of power in substation, because power flow frequently alter by various equipments such as circuit bleaker, disconnect switch and shunt reactor. Particular, in 765[㎸] system, because of form of 1.5GB for stable operation, structure of substation has been very complex. In this paper, we describe technique for application of load flow algorithm in simulator for 765[㎸] substation. For this technique, we built each database for various equipments and considered form of 1.5GB Data as form of bus and line, for application of load flow, are acquired from built database, and then calculate load flow in substation. And. results of load flow are outputted in screen of operator console program.

Modeling and Simulation Reactive Power Compensator using Multi-port Network Algorithm in Electrified Railway (다단자망 알고리즘을 이용한 급전시스템의 무효전력 보상 모델링 및 시뮬레이션)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.883-887
    • /
    • 2016
  • The power supply system in Korean electrified railway has adopted AT feeding. If a fault occurs in some substation for any reason, the vicinity substation must feed electric power on the outage substation through catenary. So, the feeding distance grows twice of the normal state at extended feeding condition. If substation's feeding distance is longer than normal condition, the catenary impedance and train to supply electric power from the substation. Therefore, the severe voltage drop can occur and power supply shall be not allowed. This paper presents the model of compensator against voltage drop using multi-port network algorithm. Whole traction power supply system can be analyzed with this model. Computer simulation including this model is performed based on real train schedule and increased schedule in case studies.

A Study on Siting of HVAC Offshore Substation for Wind Power Plant using Submarine Cable Cost Model (해저케이블 비용 모델을 이용한 HVAC 해상변전소 적정 위치 선정에 관한 연구)

  • Won, Jong-Nam;Moon, Won-Sik;Huh, Jae-Sun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.451-456
    • /
    • 2013
  • Development of the technologies for offshore wind power is proceeding actively and the installation capacity is continuously increasing because of its many advantages in comparison with the land wind power. Accordingly, project for Southwestern 2.5GW offshore wind power plant is in progress in Korea. Design of electric power systems for offshore wind power plant is very important due to its high investment and operational costs. Hence, it needs to be designed in order to minimize costs. This way can be employed in determining the installation location of offshore substation for HVAC wind power plant. According to the offshore substation site, MV inter-array cable and HV export cable lengths vary and they change a total cost regarding submarine cable. This paper represents cost models with variables which are MV inter-array cable and HV export cable lengths to locate the offshore substation for HVAC wind power plant. It is classified into submarine cable installation cost, reactive power compensator installation cost, ohmic losses, and unsupplied energy cost. By minimizing a total cost, an appropriate installation site of the offshore substation is determined.

Reliability Analysis of AC traction System Substation by using Bayes' Theory (베이즈 이론을 이용한 교류전철변전소의 신뢰도 분석)

  • Kim, Yong-Hyun;Koo, Bon-Hui;Cha, Jun-Min;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.445-450
    • /
    • 2008
  • The primary role of traction power systems is to provide reliable and continuous electrical energy to satisfy traction loads. AC traction substation transforms power from generation company and supply the power to the electric railway power line. Forced outage rate(FOR) of the equipment of substation should be used in the evaluation. This paper proposes the fast and easy way to evaluate by using Bayes' theory when a new equipment is added to the existing substation facility.

  • PDF

EMTP simulation of 345kv Substation in large network using newly developed Thevenin equivalent network (345kv 미금 변전소 외부 계통의 등가축약 기법을 이용한 EMTP 모델링에 관한 연구)

  • Jeong, Ki-Seok;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.244-246
    • /
    • 2008
  • EMTP-RV is the very powerful program to analyze the dynamic operation of the power system. To use this package in the large complex power system, it is very important to simplify the power system to simple equivalent network. In our study the 100 MVA STATCOM is placed at 345kV "MIGUM" which is the one of the 345kV substations of the Korean Electric Power System that is consist of more than 1000 bus. MIGUM substation is connected with 7 separated transmission lines to main Korean Electric power system. We developed a new method to simplify the network except the substation that we want to analysis. The power system outside the 345kV substation is modeled into the equivalent network. The loop network outside the substation can be modeled to simplified Thevenin equivalent network. The proposed method is applied to IEEE-14 Reliability Test System and the results shows the effectiveness of the method.

  • PDF

Assessing the Impact of Advanced Technologies on Utilization Improvement of Substations

  • Han, Dong;Yan, Zheng;Zhang, Dao-Tian;Song, Yi-Qun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1921-1929
    • /
    • 2015
  • The smart substation is the heart of a transmission system, which is particularly emphasized as the most significant composition of smart grids in China. In order to assess the functionality performance of substation technologies, this paper presents methods used to identify the most promising solutions for smart substation design and to evaluate the technical levels of available technologies. The multi-index optimization model is presented to address the issue of smart substation planning. A mathematical model of the planning decision problem is established with multiple objectives consisting of economic, reliability, and green key indices, and many kinds of concerns including physical and environmentally friendly operations are formulated as a set of constraints. With respect to the assessment of the technical level regarding integration of advanced technologies into a substation, a modified grey whitenization weight function is adopted to structure a novel grey clustering method. The proposed grey clustering approach is used to overcome the difficulty of insufficient quantitative assessment capacity for traditional methods. The evaluation of technical effects provides the classification definition for the development phase and the maturity level of the smart substation. The effectiveness of the proposed approaches in planning decision-making and evaluation of construction efforts is demonstrated with case studies involving the actual smart substation projects of Wenchongkou substation in China Southern Power Grid (CSG) and Mengzi substation in State Grid Corporation of China (SGCC).

Reliability Analysis of AC Railway Substation by using FTA (FTA를 이용한 교류전철변전소의 신뢰도 분석)

  • Ku, Bon-Hui;Cha, Jun-Min;Kim, Hyung-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.248-254
    • /
    • 2008
  • Electric railway system consists of traction power system, rolling stock, track, and overhead line system. A railway substation transforms the electric power transmitted from a electric power company and supply it to the railway power system for the operation of traction system.. It is very important to prevent a possible accident and keep the security of electric power system. This paper proposes a reliability analysis of AC railway substation by using Fault Tree Analysis(FTA). Failure rates of each equipment of railway substation are used to evaluate the reliability of railway substation. The analyzed results can be used to improve the system reliability. FTA is performed by the commercialized program of Relex(Ver. 7.7).

  • PDF

Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation (순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링)

  • Bae, Chang-Han
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

A Study on Optimal Design of DC Substation Capacity for Mass Transit System (전철용 직류변전소의 최적용량설계에 관한 연구)

  • Kim, J.K.;Lee, S.D.;Baek, B.S.;Lee, H.D.;Lee, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1405-1407
    • /
    • 2000
  • This paper is on optimal design for DC substation capacity for Mass Transit System. Three factors are considered for the design i.e. substation arrangements, line configuration and substation power capacity. In this study, we discussed substation power capacity only. At first, DC-fed-traction system is introduced on an outline, a characteristics of train and fed network. Optimal design procedures is described, and modelling for DC-fed-traction system are presented. The circuit-solution method is presented by matrix formula. In order to simulate DC substation power capacity more closely to actual situations, we proposed the program.

  • PDF