• Title/Summary/Keyword: Power Source

Search Result 5,856, Processing Time 0.033 seconds

Comparison of antioxidant activities of pearled and wholegrain barley harvested in Jeju (도정 유무에 따른 제주산 보리의 항산화 활성 비교)

  • Kang, Yuri;Kim, Hyun Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.252-259
    • /
    • 2021
  • Barley contains health-beneficial compounds, such as phenolic acids, flavonoids, lignans, and tocopherols. The antioxidant activities of pearled and wholegrain hull-less, premature, and black barley harvested in Jeju were investigated by measuring total phenolic content (TPC), total flavonoid content (TFC), phenolic compounds, tocopherols (T), and tocotrienols (T3), along with their in vitro antioxidant activities. Consequently, TPC and TFC in wholegrain barley groups were higher than those in pearled barley. Gallic acid (1.55-2.98 ㎍/g) and protocatechuic acid (0.67-2.84 ㎍/g) were the predominant phenolic compounds in barley. Total T and T3 concentrations of wholegrain barley groups were significantly higher than those of pearled barley (p<0.05). Except for the metal chelating effect and reducing power, the in vitro antioxidant activities of wholegrain barley were significantly higher than those of pearled barley. These results indicate that wholegrain Jeju barley can be used as a natural antioxidant source in the food industry.

Interpretation of the Forest Therapy Process and Effect Verification through KeyWord Analysis of Literature on Forest Therapy (산림치유 효과 검증 연구의 주요어 분석을 통한 치유 발현과정 해석)

  • Park, Kyeong-Ja;Shin, Chang-Seob;Kim, Dongsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.82-90
    • /
    • 2021
  • In this study, the validity of the forest therapy process, in which forest activities using forest therapy factors lead to immunity promotion and health promotion, was analyzed theoretically and qualitatively to refine and systemize the forest therapy concept. Research and analysis data were collected from the websites of institutions related to forest therapy; 33 theses and 33 original research articles from 2000 to March 2020 were searched for forest therapy key words, as well as the prize winning work of the 2016 forest therapy experience essay. A word cloud was generated by frequency of nouns and adjectives and from the key words in the web pages, theses, articles, and the forest therapy experience essay. Through interpretation of word frequency, the systemic flow of forest therapy was defined. The results suggest that the source of forest therapy's power was a positive experience of the forest and an improved attitude toward nature as well as forest therapeutic factors. The therapeutic effect is maximized through the forest healing program, leading to physical and mental resilience and resistance; consequently, health and immunity are promoted. From this study, forest therapy is proposed as "a health promotion activity for the psychological, physical, and spiritual resilience of the subjects through various environmental factors of the forest, positive experiences, and attitudes toward the forest."

A Study on the Safety Distance of the Fuelling Facilities by the Radiation Heat in the Fire at the Gas Station (주유소 내 부대시설 화재발생시 복사열에 따른 주유설비 안전거리에 관한 연구)

  • Kim, Kisung;Lee, Sangwon;Song, Dongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.7-13
    • /
    • 2021
  • Various research has been done on fires and explosions at gas stations at home and abroad. However, only studies of off-site damage in the event of fire at the gas station were conducted, and research on fire at the auxiliary facilities in the gas station was insufficient. The gas station is a place where anyone can easily access dangerous goods. As the risk of fire increases due to the recent increase of auxiliary facilities such as convenience stores and car repair shops in gas stations, it is important to detect the effects of fire on the main oil refinery in case of fire and to verify the validity of existing regulations. In this thesis, we conducted a study to find out the effect of radiation heat on the separation between fixed and fixed oil reactors in the event of fire at an auxiliary facility. Simulation was modelled using FDS 5.5.3 Version, and the size of the fire source was configured with 13 fire assessment devices and the heat emission rate per unit area was entered. Simulation shows that the separation distance of 2 m does not secure the safety of the gas pump in the event of fire at the auxiliary facilities, and radiation heat does not damage at the separation distance of at least 4 m. Accordingly, facilities that can block radiant heat in the event of fire at auxiliary facilities, and measures to limit the use of auxiliary facilities or to re-impose the separation between buildings and fixtures will be needed.

Proposal on Active Self Charging and Operation of Autonomous Vehicle Using Solar Energy (태양광을 이용한 자율주행 자동차의 능동적 자가 충전 및 운행 제안)

  • Hur, Hyun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.85-94
    • /
    • 2022
  • In modern society, environmental and energy problems have caused to replace cars with environment friendly energy. Vehicles with internal combustion engine which use petroleum are one of the factors that influence global pollution due to environment problems such as fine dust and ozone layer destruction. In addition use of energies for automobile making resources to become depleted. To solve this limited oil energy problem by using other energy sources. To the problem using electric energy and green energy as alternative for a solution. Among environment friendly energies this paper studies the possibility of drive service for autonomous vehicles that self-charges using only solar energy and whether they can be used as pollution free and alternative energy for automobiles. Studies was researched based on published literature review, data from ministry of transportation and automobile companies. Also case of electric vehicle and prototype automobile using only solar energy and the theory of near future technologies. Many automakers are using electric cars as alternative energy. Also making efforts to use solar energy as an substitute energy source and as a way to supplement electricity. Results show that there is a potential on operating autonomous vehicle using only solar energy. Furthermore, it will be possible to use automobiles actively, also use and supply solar energy. This paper suggest the possibility of contributing to the future of the automotive industry.

Position Control of Dual Redundant Asymmetric Tandem Electro-Hydrostatic Actuator for Aircraft based on Backstepping Technique (백스테핑 기법을 이용한 항공기용 이중화 비대칭형 직렬 전기-정유압 구동기의 위치제어)

  • Kim, Daeyeon;Park, Hyung Jun;Kim, Sang Seok;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The electro-hydrostatic actuators (EHA) are widely used in various industrial fields since they can independently execute the function of the hydraulic power source and have high efficiency. Particularly, in the aviation field, the EHA is mainly designed as dual redundant asymmetric tandem actuator to mitigate failure and minimize installation space. However, aviation EHAs designed in the form of dual redundant asymmetric tandem actuator have the disadvantage of decreased durability performance due to the occurrence of force fighting. In this paper, the controller is designed based on backstepping technique to improve control performance and reduce force fighting for aviation EHA. The augmented state observer is proposed to estimate the states required for control. Through simulation, it was verified that the proposed controller had superior control performance and significantly reduces the force fighting compared to the general PI controller.

Speech extraction based on AuxIVA with weighted source variance and noise dependence for robust speech recognition (강인 음성 인식을 위한 가중화된 음원 분산 및 잡음 의존성을 활용한 보조함수 독립 벡터 분석 기반 음성 추출)

  • Shin, Ui-Hyeop;Park, Hyung-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.326-334
    • /
    • 2022
  • In this paper, we propose speech enhancement algorithm as a pre-processing for robust speech recognition in noisy environments. Auxiliary-function-based Independent Vector Analysis (AuxIVA) is performed with weighted covariance matrix using time-varying variances with scaling factor from target masks representing time-frequency contributions of target speech. The mask estimates can be obtained using Neural Network (NN) pre-trained for speech extraction or diffuseness using Coherence-to-Diffuse power Ratio (CDR) to find the direct sounds component of a target speech. In addition, outputs for omni-directional noise are closely chained by sharing the time-varying variances similarly to independent subspace analysis or IVA. The speech extraction method based on AuxIVA is also performed in Independent Low-Rank Matrix Analysis (ILRMA) framework by extending the Non-negative Matrix Factorization (NMF) for noise outputs to Non-negative Tensor Factorization (NTF) to maintain the inter-channel dependency in noise output channels. Experimental results on the CHiME-4 datasets demonstrate the effectiveness of the presented algorithms.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

Analysis of Environmental Sustainability in South Korean Inland Windfarms (한국 육상풍력발전사업의 환경적 지속가능성 평가 연구 - 58개 환경영향평가서 사례에 대한 정량적 분석 -)

  • Jeong, Eunhae
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.1
    • /
    • pp.47-62
    • /
    • 2022
  • Wind power has been rapidly growing over last decade in the world as well as in South Korea as a feasible renewable energy source. Providing sustainable energy to all while securing environmental sustainability requires evidence based policy making and innovative solutions. Through analysis of 58 cases of South Korean Environmental Impact Assessment (EIA) Report, this paper seeks to identify answers to the following two questions. What are the key characteristics for inland windfarm? Is there a way of measuring environmental sustainability to compare each location to reduce negative environmental impact? Variables related to environmental sustainability of each windfarm case were collected from EIA report and the factor analysis of environmental variables was conducted to calculate the weight for each variable to build environmental sustainability index (ESI) to provide as evidence-based tools for decision making on the location of inland windfarm. 58 cases were categorized as three types 1) Mountain type 2) Ranch Type and 3) Coastal Type depending on their height and degree of naturalness. For analytical research, first, it was successfully calculated environmental sustainability of each windfarm case ranging from 1.04 (#33, Ranch type) to -1.44 (#55, Mountain type). Second, the analysis results showed that ranch type is most environmentally sustainable (Average ESI = 0.4551), followed by coastal type (Ave ESI = 0.3712) and lastly mountain type (Average ESI = -0.3457). These findings are consistent with the previous researches on inland windfarms and provides substantive policy implication on the renewable energy policies.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Analysis of Abnormal Signals for Induction Motor according to Operating Status of Fire Pumps (소방펌프의 운전상태에 따른 유도전동기의 이상 신호 분석)

  • Ku, Bonhyu;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.20-27
    • /
    • 2022
  • This article aims to develop an algorithm that detects fire pump defects by analyzing the current signals of an induction motor, which are triggered by changes in the flow rate and pressure of multistage volute pumps that are used for fire services. The operational status of the pumps was categorized into three: first, normal operation; second, a defect that is caused by a change in the current value; and third, a defect occasioned by a change in current, pressure, and flow rate. When a fire pump was in normal operation, the motor's operating current was measured between 5.06 A and 6.9 A, the flow rate was estimated at 0-0.27 m3/min, and the pressure ranged from 0 to 0.47 MPa. In the event that a defect was caused by an abnormal current value in the motor, it was attributed to the pump's adherence. Furthermore, if there was no source of water, the defect was considered to have been induced by phase-loss operation, no-load operation, or run-stop operation, with the current value of each scenario being measured at > 52.8 A, < 4.13 A, > 45.15 A, and < 3.8 A, respectively, placing its overall range between 0 and 50 A. The sources of defects were detected based on an analysis of the flow rate, pressure, and current, which represent the following causes: air inflow into the casing, inadequate suction of water, and reverse-phase operation, respectively. Each cause entailed the following values: when air seeped into the casing, the pressure was measured at 0.24 MPa irrespective of changes in the flow rate; when there was inadequate suction of water, the pressure was recorded between 0 and 0.05 MPa despite changes in the flow rate; and when the power line's reverse-phase loss was the cause of the defect, the pressure was measured at 0.33 MPa for a flow rate of 0 L/min, and a higher flow rate decreased the pressure to nearly 0 MPa. The results of this study will enable engineers to develop a pump defect detection algorithm that is based on an analysis of current, and this algorithm will facilitate the execution of a program that will control a fire pump defect detection system.