• Title/Summary/Keyword: Power Shift

Search Result 1,057, Processing Time 0.03 seconds

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

Study on Influences and Elimination of Test Temperature on PDC Characteristic Spectroscopy of Oil-Paper Insulation System

  • Liu, Xiao;Liao, Ruijin;Lv, Yandong;Liu, Jiefeng;Gao, Jun;Hao, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1107-1113
    • /
    • 2015
  • Test temperature is an important factor affecting the measurement results of dielectric response of field power transformers. In order to better apply the polarization and depolarization current (PDC) to the condition monitoring of oil-paper insulation system in power transformers, the influences and elimination method of test temperature on PDC characteristic spectroscopy (PDC-CS) were investigated. Firstly, the experimental winding sample was measured by PDC method at different test temperatures, then the PDC-CS was obtained from the measurement results and its changing rules were discussed, which show that the PDC-CS appears a horizontal mobility with the rise of temperature. Based on the rules, the “time temperature shift technique” was introduced to eliminate the influence of test temperature. It is shown that the PDC-CS at different test temperatures can be converted to the same reference temperature coincident with each other.

The robust design of Ball-Stop part for power shift for vehicle with more heaver than 5 ton by using DFSS (DFSS 를 적용한 5 톤 이상 상용차용 변속배력장치의 BALL-STOP 구조부 강건설계)

  • Chung W.J.;Jung D.W.;Song T.J.;Cho Y.D.;Yoon C.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1664-1667
    • /
    • 2005
  • The main function of Ball-Stop part is to operate power shift for vehicle with more than 5 ton when a driver changes gear using suitable force. This paper presents the implementation of a DFSS(Design For Six Sigma) for robust design of Ball-Stop part of power shift. The factors influencing Ball-Stop part performance is derived to find control factor. Based on this factor, contact force between head and detent pin analysis is performed to get optimal factor is analyzed and compared with contact force test result to verify reliability of design. This makes clear the reason why the proposed one is necessary and the role of DFSS.

  • PDF

Development of Mixed Hydrogen Gas Generator Power Conversion System (Mixed Hydrogen Gas Generator용 전력변환장치 개발)

  • Jung, Jang-Gun;Mun, Sang-Pil;Cho, Gil-Je;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.88-92
    • /
    • 2007
  • In this paper, the basic experiment, electrolytic cell design and basic manufacturing have been made to interpret the characteristics of Hydrogen-Oxygen-Gas-Generator. As for the detailed matters, the data research on basic technology on Hydrogen-Oxygen-Gas and analysis on characteristics of Hydrogen-Oxygen-Gas from basic experiment. Also the experiment of characteristics and comparative evaluation between constant current source using IGBT converter from existing method and constant current source using new phase shift PWM control method converter. As results when it has injected constant DC current, we has compared Gas quantities by variable ripple frequencies using phase shift PWM control method converter. Therefore, in linear region, it has not different Gas quantities by constant DC current and by phase shift PWM control method converter. Also, it has increased Gas quantities wilder linear region when put ripple frequency at saturation region. Through, Gas quantities and input power, it has acquired higher input power per Gas quantities at put pulse curren. Therefore, when designing converter or inverter for electrolysis, which has ripple current.

  • PDF

Development of the Oil Consumption Rate Test Method and Measurement Data Analysis for an Automatic Transmission System (자동변속기 오일 소요유량 시험법개발 및 측정데이터 분석)

  • Jeong, H.S.;Oh, S.H.;Yi, J.S.;Lim, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • Automatic power transmission systems consisted of a torque converter and several planetary gear sets, clutches and brakes are controlled by a hydraulic shift control circuit and an electronic transmission control unit. The hydraulic circuit serves for the operation of the torque converter and lubrication oil supply of the transmission system as well as for the actuation of clutches for the automatic gear shift. The complicated hydraulic control circuit constructed by many spools, solenoids, orifices and flow passages are integrated into one small valve block and it is powered by one hydraulic pump. In this paper, a test equipment was developed to measure the oil consumption of each component at various wide operating conditions. Test data about 730 sets acquired from five test items are analyzed and discussed on the oil capacity of the circuit.

  • PDF

Hessenberg Method for Small Signal Stability Analysis of Large Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg법)

  • Nam, Hae-Gon;Song, Seong-Geun;Sim, Gwan-Sik;Mun, Chae-Ju;Kim, Dong-Jun;Mun, Yeong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.168-176
    • /
    • 2000
  • This paper presents the Hessenberg method, a new sparsity-based small signal stability analysis program for large interconnected power systems. The Hessenberg method as well as the Arnoldi method computes the partial eigen-solution of large systems. However, the Hessenberg method with pivoting is numerically very stable comparable to the Householder method and thus re-orthogonalization of the krylov vectors is not required. The fractional transformation with a complex shift is used to compute the modes around the shift point. If only the dominant electromechanical oscillation modes are of concern, the modes can be computed fast with the shift point determined by Fourier transforming the time simulation results for transient stability analysis, if available. The program has been successfully tested on the New England 10-machine 39-bus system and Korea Electric Power Co. (KEPCO) system in the year of 2000, which is comprised of 791-bus, 1575-branch, and 215-machines. The method is so efficient that CPU time for computing five eigenvalues of the KEPCO system is 3.4 sec by a PC with 400 MHz Pentium IIprocessor.

  • PDF

The power regulation of a High-Frequency Induction Heating System with time variance load using a neural fuzzy controller (뉴로퍼지 제어기를 이용한 고주파 유도 가열기의 시변부하에 대한 정전력 제어)

  • 장종승;김승철;임영도
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • This paper describes a phase-shift pulse-width modulation and pulse-frequency modulation series resonant high-frequency inverter using IGBT(Insulated-Gated Bipolar Transistor) for the power control of high-frequency induction heating using neuro-fuzzy, which is practically applied for 20KHz~500KHz induction-heating and melting power supply in industrial fields. The adaptive frequency tracking based phase-shifting PWM(Pulse-Width Modulation) regulation scheme is presented in order to minimize switching losses. The trially-produced breadboards using IGBT are successfully demonstrated and discussed.

  • PDF

A Study on Implementing a Phase-Shift Full-Bridge Converter Employing an Asynchronous Active Clamp Circuit

  • Lee, Yong-Chul;Kim, Hong-Kwon;Kim, Jin-Ho;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.413-420
    • /
    • 2014
  • The conventional Phase-Shift Full-Bridge (PSFB) converter has a serious voltage spike because of the ringing between the leakage inductance of the transformer and the parasitic output capacitance of the secondary side rectifier switches. To overcome this problem, an asynchronous active clamp technique employing an auxiliary DC/DC converter has been proposed. However, an exact analyses for designing the auxiliary DC/DC converter has not been presented. Therefore, the amount of power that is supposed to be handled in the auxiliary DC/DC converter is calculated through a precise mode analyses in this paper. In addition, this paper proposes a lossy snubber circuit with hysteresis characteristics to reduce the burden that the auxiliary DC/DC converter should take during the starting interval. This technique results in optimizing the size of the magnetic component of the auxiliary DC/DC converter. The operational principles and the theoretical analyses are validated through experiments with a 48V-to-30V/15A prototype.

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF