• Title/Summary/Keyword: Power Saving Circuit

Search Result 95, Processing Time 0.021 seconds

Design and Implementation of PLC Automatic Welding System with Power-saving (전력 절약형 PLC 자동용접 시스템 설계 및 구현)

  • Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.6-12
    • /
    • 2015
  • The welding technology has been used in almost all industries such as automotive, shipbuilding, power plants and industrial machinery. In this study, the design and implementation of PLC $CO_2$ welding automation system were investigated. For these purposes, the structure analysis for driving supporter was performed and specification of automatic voltage regulator, mutual interface of system and circuit diagram were designed in order to contrive power-saving system. As the results, the stability of design for driving supporter could be convinced by numerical analysis and PLC automatic welding system was suitable for welding automation of structural-manufacturing factory capable of producing various and small amount products. Therefore, it was confirmed that PLC $CO_2$ welding automation system could contribute to productivity, stable quality and power-saving.

Electric Power Energy Saving and Efficient Measures in Buildings using the Smart-Meter (스마트미터를 활용한 건축물의 전력에너지 절감 및 효율화 방안)

  • Hwang, Hyun Bae;Jung, Byeong Soo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.365-372
    • /
    • 2014
  • In this paper, We implement a power-saving and efficient measures in buildings using the smart-meter. In order to save electric power energy, We propose an improved automatic power-factor controller(APFC) and demand control measures. This is achieved by controlling directly circuit breakers and the capacitor bank feeders in real time via a two-way smart-meter's ICT skills. Improved APFC is minimizing installation costs by series-parallel connecting heterologous capacitors to form a more diverse capacitor banking and controlling using the smart-meter. In order to suppress the demand power, We have designed a smart-meter with communication functions using Atmel's AVR465 and tested an operated lodging building for 24-hours. As a result, We made sure to always retained more than 95% power factor and did not occur over compensation.

Pulse Density Modulated ZVS High Frequency Inverter with Reverse Blocking Single Switch for Dielectric Barrier Discharge Lamp Dimming

  • Sugimura Hisayuki;Yasui Kenji;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.206-209
    • /
    • 2006
  • At present, the cold cathode fluorescent lamp (CCFL) using mercury lamp has been generally used far liquid crystal backlight source of personal computer and car navigation and so on. This kind of lamp is more excellent on luminance performance and cost. However, the requirements of liquid crystal backlight due to a light source without mercury have been strongly increased from a viewpoint of the actual influence on environmental preservation and environmental recycling. As fluorescent lamp without mercury, Dielectric Barrier Discharge based rare gas fluorescent lamp (DBD-FL) using xenon (Xe) gas has been studied so far. This DBD lamp has no influence on the human body and environmental recycle. Its operating life is long because electrode is out. In this paper, the simulation and experimental results of soft switching high frequency inverter with reverse blocking single switch as a high frequency power supply circuit for DBD-FL using Xe gas are comparatively evaluated and discussed from a practical point of view.

  • PDF

Two Paralleled Four Quadrant DC Chopper for Gradient Coil Magnetic Fields in MRI System

  • Park, Hyung-Beom;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.11
    • /
    • pp.22-27
    • /
    • 2009
  • This paper presents a two-paralleled four quadrant DC chopper type PWM power conversion circuit in order to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This circuit has 8-IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective DSP-based control system realize a high control facility and accuracy. It is proved that the new control system will greatly enlarge the diagnostic target and improve the image quality of MRI.

A Study on Smart Peak Power Control System (스마트 최대 전력 관리 시스템 알고리듬 연구)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.227-228
    • /
    • 2013
  • The paper is related to smart maximum power system based on program logic. Especially, this system compares the total demand power with the target power by using the signal from the digital kilo watt meter. Based on the power information by the maximum power control equipment the consumed future power is anticipated. In addition, through consumed future power the controllable target power is set, and it applies on the maximum power control equipment. User or manager would control the load efficiently through the simple programming which could control load based on the control sequence and relay. So this system could control load more efficient and stable. Also the conventional load control circuit is not needed. Therefore, it is possible to improve the simple system configuration, which is resulted in cost effective and time saving. So this system is anticipated on time and coast.

  • PDF

Circuit Techniques for Low-Power Data Drivers of TFT-LCDs

  • Choi, Byong-Deok;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.167-181
    • /
    • 2001
  • A stepwise driving method was used for reducing the AC power consumption in a TFT-LCD. The AC power takes the largest portion of the total power consumption of a TFT-LCD. Experimental results confirmed that the AC power saving efficiency reached up to 75% when a 5-stepwise driving with each step time of $2\mu$ sec was applied to a 14.1 inch-diagonal XGA TFT-LCD. The second largest component of power consumption called the DC power comes from the quiescent currents in Op-amps. A simple and efficient architecture was proposed in this work to reduce this DC power consumption: Half of the Op-amps have the 5V-supplies, and the rest half have the 10V-supplies, and two Op-amps are shared by adjacent two channels. Measurements of test circuits showed that this simple method could reduce over 40% of the DC power consumption..

  • PDF

LED Backlight Driving Circuits and Dimming Method

  • Kwon, Oh-Kyong;Jung, Young-Ho;Lee, Yong-Hak;Cho, Hyun-Suk;Nam, Ki-Soo;In, Hai-Jung
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.173-181
    • /
    • 2010
  • In this paper, light-emitting-diode (LED) backlight driving circuits and dimming method for medium-sized and large liquid crystal displays (LCDs) are proposed. The double loop control method, the intelligent-phase-shifted PWM dimming method, the fast-switching current regulator, and the current matching techniques are proposed to improve not only the current regulation characteristics and the power efficiency but also the current matching characteristics and the transient response of the LED current. The brightness of the backlight using the proposed local dimming method was determined from the histogram of the local block to reduce the power consumption of the backlight without image distortion. The measured maximum power efficiency of the LED backlight driving circuit for medium-sized LCDs was 90%, and the simulation results showed an 88% maximum power efficiency of the LED backlight driving circuit for large LCDs. The maximum backlight power-saving ratio of the proposed dimming method was 41.7% in the simulation with a high-contrast image. The experiment and simulation results showed that the performance of LEDs as LCD backlight units (BLUs) improved with the proposed circuits and method.

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

A Study on Energy Saving of IMV Circuit using Pressure Feedback

  • Park, Hyoung Gyu;Nahian, Syed Abu;Anh, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.31-44
    • /
    • 2016
  • In recent hydraulic actuation systems, conventional hydraulic spool valves with pressure compensators are becoming less popular, after the introduction of the independent metering concept for valves. Within this concept, four valves are needed for actuating a single cylinder. Subsequently, this increases the freedom of controlling both chamber pressures of the cylinder, and it then provides for electronically-controlled pressure compensation facilities. Additionally, this has the potential to save valuable energy. The primary focus of this paper is to develop a new generation of hydraulic circuits using the independent metering valve (IMV). This configuration can function well as a conventional IMV circuit while providing better pressure control. We first describe the working principles of five distinct modes of the proposed IMV system. Then, mathematical models for each working mode are presented. Finally, we present numerical simulations that have been carried out to evaluate the system performance, in comparison with that of the conventional IMV configuration. The simulation results demonstrate that the performance of the new IMV configuration is superior to the conventional IMV system in terms of energy savings.

New Active Snubber Boost PFC Converter for Efficiency Improvement in Home Appliances Applications

  • Jeong, In Wha;Park, Mingyu;Um, Kee-Ju;Heo, Chang Jae;Lee, JunHo;Kim, Kwangsoo;Suh, Bum-Seok;Kim, Yong-Wook;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.289-290
    • /
    • 2012
  • This paper proposes a new active snubber boost PFC converter to provide a zero-voltage-switching (ZVS) turn-on condition and reduce electromagnetic interference (EMI) noise in home appliances and renewable energy applications, including solar or fuel cell electric systems. The proposed active snubber circuit enables a main boost switch of the boost-type PFC or grid converter to turn on under a ZVS condition and reduce the switching losses of the main boost switch. Moreover, for the purpose of a specialized intelligent power module (IPM) fabrication, the proposed boost circuit is designed to satisfy some design aspects such as space saving, low cost, and easy fabrication. Simulation and experimental results of a 2kW IPM boost-type PFC converter are provided to verify the effectiveness of the proposed active snubber boost circuit.

  • PDF