• Title/Summary/Keyword: Power Quality Cost

Search Result 437, Processing Time 0.023 seconds

Economic Design of Synthetic Control Charts (합성 관리도의 경제적 설계)

  • 임태진;김용덕
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.2
    • /
    • pp.117-130
    • /
    • 2003
  • This paper investigates the economic design of synthetic control charts. The synthetic control chart has been proven to be statistically superior to the $\bar{X}$-control chart, but its economic characteristics have not been known. We develop an economic model of the synthetic control chart, based on Duncan's model. The synthetic chart has one more decision variable, the lower control limit for the conforming run length. In addition to this, the significance level and the power of the synthetic chart are more complicated than those of the $\bar{X}$-chart. These features make the optimization problem more difficult. We propose an optimization algorithm by adapting the congruent gradient algorithm. We compare the optimal cost of the synthetic chart with that of (equation omitted)-control chart, under the same input parameter set of Duncan’s. For all cases investigated, the synthetic chart shows superior to the $\bar{X}$-chart. The synthetic control chart is easy to implement, and it has better characteristics than the $\bar{X}$-chart in economical sense as well as in statistical sense, so it will be a good alternative to the traditional control charts.

Optimum redundancy design for maximum system reliability: A genetic algorithm approach (최대 시스템 신뢰도를 위한 최적 중복 설계: 유전알고리즘에 의한 접근)

  • Kim Jae Yun;Shin Kyoung Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.125-139
    • /
    • 2004
  • Generally, parallel redundancy is used to improve reliability in many systems. However, redundancy increases system cost, weight, volume, power, etc. Due to limited availability of these resources, the system designer has to maximize reliability subject to various constraints or minimize resources while satisfying the minimum requirement of system reliability. This paper presents GAs (Genetic Algorithms) to solve redundancy allocation in series-parallel systems. To apply the GAs to this problem, we propose a genetic representation, the method for initial population construction, evaluation and genetic operators. Especially, to improve the performance of GAs, we develop heuristic operators (heuristic crossover, heuristic mutation) using the reliability-resource information of the chromosome. Experiments are carried out to evaluate the performance of the proposed algorithm. The performance comparison between the proposed algorithm and a pervious method shows that our approach is more efficient.

Reliability Evaluation for Considering the Voltage Quality in Power Distribution Systems (전압품질을 고려한 배전계통의 신뢰도 평가)

  • Yun, Sang-Yun;Kim, Oun-Seok;Bae, Joo-Chun;Kim, Nark-Kyung;Park, Joong-Shin;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.525-527
    • /
    • 2000
  • This paper presents a reliability evaluation method for considering the voltage quality. The proposed evaluation methods are contained the sustained interruption, momentary interruption and voltage sag. For momentary interruption, evaluation indexes are divided the duration based index and the interruption cost index. For voltage sag, the final result of evaluation method represents the magnitude for customers' risk due to the voltage sag. The proposed method is tested using the RBTS model and a reliability data in KEPCO's system.

  • PDF

Effect of Welding Current Type on Weldability in Spot Welding of Aluminum Alloy (알루미늄 합금의 점용접에서 용접전류 형태가 용접성에 미치는 영향)

  • 한용섭
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Spot welding is one of the important welding processes for the construction of thin metal sheet. Because of low investment cost, alternating welding current is widely applied for power source. Direct current type could be, however, recommened for high quality weldment. In this study, the effect of welding current type on the weldability and the electrode life in spot welding of aluminium alloy were investigated. Various welding tests were done by using three phase direct and alternating welding current, respectively. In spite of high variation of welding force, weld quality and electrode life with alternating welding current were shown better results than those with direct current for 2mm thick alumininum alloy sheets. This was due to excessive erosion of the positive electrode in direct welding current compared with the negative one. On the contrary to 2mm sheets, the welding parameters of alternating current for 1mm sheets must be carefully selected.

  • PDF

A Proposal of USN-based DER(Decentralized Energy Resources) Management System (USN 기반의 댁내 분산 전력 관리 시스템 제안)

  • Kim, Bo-Min;Kim, Jeong-Young;Bang, Hyun-Jin;Jang, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.871-874
    • /
    • 2010
  • Needs for Smart Grid development are increasing all over the world as a solution to its problem according to depletion of energy resources, climatic and environmental rapidly change and growing demand for electrical power. Especially decentralized power is attracting world's attention. In this mood a new era for a unit scale of decentralized power environment is on its way in building. However there is a problem to have to be solved in the uniformity of power quality because the amount of power generated from renewable energy resources such as wind power and solar light is very sensitive to climate fluctuation. And thus this paper tries to suggest an energy management method on basis of real time monitoring for meteorological data. In the current situation of lacking in USN-based killer application in Smart Grid field, this paper proposes the USN-based DER management system which collects the meteorological data and control power system througout utilizing wireless sensor network technique this business. This communication technique is regarded to be efficient in aspects of installation cost and tits maintenance cost. The proposed EMS model embodies the method for predicting the power generation by monitoring and analyzing the climatic data and controling the efficient power distribution between the renewable energy and the existing power. The ultimate goal of this paper is to provide the technological basis for achieving zero-energy house.

  • PDF

Studies on Determinant Factors of SCM Performance: From the Supplier Perspective (SCM 성과 결정요인에 관한 통합적 연구: 공급업체 관점으로)

  • Park, Kwang-Oh;Chang, Hwal-Sik
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.1-27
    • /
    • 2011
  • In an attempt to cope with widespread, dynamic, and accelerating changes in both internal and external business environments, companies often utilize information technologies such as SCM(Supply Chain Management). To date, SCM research has mainly focused on the effects of dynamic factors on SCM success and emphasized adoption strategies and critical success factors. Consequently, the effects of more static factors such as interdependency between SCM partners have been largely ignored. The purpose of this study, therefore, is to examine the effects of both dynamic and static factors on SCM performance by controlling for information quality and partnership quality. The five factors examined in this study include innovative ness, mutual dependency, quality of information, partnership quality, and SCM performance. All factors were examined from the perspective of part suppliers, except the mutual dependency which was examined from two aspects: supplier's dependency on customer and customer's dependency on supplier. Data was collected through five hundred survey questionnaires distributed to the part supplier companies that have implemented SCM systems for at least one year. As a result, a total of 170 valid responses were obtained. A structural equation research model was fitted using SAS 9.1.3 and SMART-PLS 2.0. The results of this study can be summarized as follows. First, innovativeness positively affected SCM information quality. SCM partnership quality, and ultimately SCM performance. The path coefficient between innovativeness and information quality was 0.387, with a t-value of 3.528. Innovativeness also had a positively direct effect on partnership quality. The path coefficient was 0.351 with a t-value of 3.366. The total effect of innovativeness on partnership quality was significant, although its indirect effect on partnership quality by altering information quality was negligible. The total indirect effect of innovativeness on SCM performance by affecting information quality and partnership quality was significant with a p-value of 0.014. Innovativeness played an important role in determining SCM performance. Second, mutual dependency showed no significant effect on SCM information quality. This result contradicts the earlier assertion that the more dependent two companies are, the more accurate and timely the information they exchange ought to be. This study showed that this may not be the case; a partner may provide information of poor quality even when it is strongly dependent on the other. Mutual dependency showed significant effect on partnership quality. However, when the mutual dependency perceived by suppliers was divided into two parts, one being a supplier's dependency on its customer company and the other being a customer's dependency on the supplier, the latter showed a significant impact on the perceived SCM partnership quality. This result indicates that a customer company can hardly improve the partnership quality perceived by suppliers by making them more dependent. It improves only when the suppliers perceive that their partners, typically having more bargaining power, are more dependent on them. The overall effect of mutual dependency of any kind on SCM performance, however, was not significant. Although mutual dependency has been mentioned as an important static factor influencing almost every aspect of cooperation on a supply chain, its influences may not be as significant as it was initially perceived to be. Third, the correlation between information quality and partnership quality was 0.448 with a p-value of less than 0.001. Information quality had a path coefficient of 0.256 to partnership quality with a t-value of 2.940. The quality of information exchanged between partners may have an impact on their partnership quality. Fourth, information quality also had a significant impact on SCM performance with a path coefficient of 0.325 with a t-value of 3.611. In this study, SCM performance was divided into four categories: product quality, cost saving, service quality, and order fulfillment. Information quality has Significant impacts on product quality, cost saving and service quality, but not on order fulfillment. Fifth, partnership quality, as expected, had a significant impact on SCM performance. The path coefficient was 0.403 with a t-value of 3.539. Partnership quality, like information quality, had positive impacts on product quality, cost saving and service quality, but showed no impact on order fulfillment. It seemed that order fulfillment is the hardest category of performance that SCM can satisfy. One major limitation of this study is that it surveyed only the suppliers. To better understand the dual aspects of SCM, it is important to survey both suppliers and the assemblers, especially in pairs. This research, to our best knowledge, was the first attempt to study the level of dependency between the two groups by measuring the dual aspects of SCM and studying mutual dependency from the categories of suppliers and assemblers each.. In the future, a more comprehensive and precise measurement of SCM characteristics needs to be achieved by examining from both the supplier's and assembler's perspectives.

Analysis of Viterbi Algorithm for Low-power Wireless Sensor Network (저전력 무선 센서네트워크를 위한 비터비 알고리즘의 적용 및 분석)

  • Park, Woo-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.1-8
    • /
    • 2007
  • In wireless sensor network which uses limited battery, power consumption is very important factor for the survivality of the system. By using low-power communication to reduce power consumption, error rate is increased in typical conditions. This paper analyzes power consumption of specific error control coding (ECC) implementations. With identical link quality, ECC provides coding gain which save the power for transmission at the cost of computing power. In sensor node, transmit power is higher than computing power of Micro Controller Unit (MCU). In this paper, Viterbi algerian is applied to the low-transmit-power sensor networks in terms of network power consumption. Practically, Viterbi algorithm presents 20% of reduction of re-transmission in compared with Auto Repeat Request (ARQ) system. Furthermore, it is observed that network power consumption is decreased by almost 18%.

Comprehensive Evaluation of Impacts of Connecting Distributed Generation to the Distribution Network

  • Jin, Wei;Shi, Xuemei;Ge, Fei;Zhang, Wei;Wu, Hongbin;Zhong, Chengyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.621-631
    • /
    • 2017
  • In this paper, we study the various impacts of connecting distributed generation (DG) to the distribution network. The comprehensive evaluation index system (CEIS) of four hierarchies is established, considering economy, reliability and voltage quality, and the calculation methods of different indexes are presented. This paper puts forward an improved triangular fuzzy number analytic hierarchy process (ITFNAHP) to weight the second level indexes (SLI) and the third level indexes (TLI), and calculates the variation coefficient to weight the fourth level indexes (FLI). We calculate the comprehensive weight coefficients based on the weight coefficients of the SLI, TLI and FLI, and then calculate the comprehensive evaluation of satisfaction (CES) of different access schemes. On the basis of the IEEE 33-bus example system, simulations of the calculation methods and the comprehensive evaluation method are carried out under different DG access schemes according to the same total investment cost and the same permeability, respectively, and the simulation results are analyzed and discussed.

Coreless Printed Circuit Board (PCB) Transformers - Fundamental Characteristics and Application Potential

  • Hui S. Y.;Tang S. C.;Chung H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.1-6
    • /
    • 2001
  • In this article, the fundamental concept, characteristics and application potentials of coreless printed-circuit-board (PCB) transformers are described. Coreless PCB transformers do not have the limitations associated with magnetic cores, such as the frequency limitation, magnetic saturation and core losses. In addition, they eliminate the manual winding process and its associated problems, including labor cost, reliability problems and difficulties in ensuring transformer quality in the manufacturing process. The parameters of the printed windings can be precisely controlled in modern PCB technology. Because of the drastic reduction in the vertical dimension, coreless PCB transformers can achieve high power density and are suitable for applications in which stringent height requirements for the circuits have to be met. A transformer's power density of $24W/cm^2$ has been reported in a power conversion application. When used in an isolation amplifier application, coreless PCB transformers tested so far enable the amplifier to achieve a remarkable linear frequency range of 1MHz, which is almost eight times higher than the frequency range of 120kHz in existing Integrated-Circuit products. PCB materials offer extremely high isolation voltage, typically from 15kV to 40kV, which is higher than many other isolation means such as optocouplers. It is envisaged that coreless PCB transformers can replace traditional core-based transformers in some industrial applications. Their application potentials deserve more attention and exploration.

  • PDF

Analysis for the Operating Characteristics when the Induction Motor is Used as a Generator (유도전동기를 발전기로 사용시 동작 특성 해석)

  • Kim, Jong-Gyeum
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Squirrel cage induction motor is the main driving system of industrial field and familiar with its use in a large variety of applications. The structure and operating characteristics of induction generator is almost identical to induction motor, but the induction generator part is used restrictively from hydropower power and wind power development etc. Recently induction generator is commonly used for micro & small hydro power applications due to its simplicity, reliability, low cost and robustness. Input and output of induction motor has turned against at the induction generator operation. Rotation speed of induction generator is small faster than synchronous speed of induction motor. As output of induction machines increases with the increasement of speed, so loss is same. Actually, generator efficiency is lower than motor at this condition. If induction generator is connected with mechanical load such as increaser, total efficiency is decreased. Consequently the quality in compliance with an induction motor parameter applying like that in the generator is a possibility of having the error of some. In this paper, we analyzed that input, output, torque and efficiency of induction machine is different from each other above and below synchronous speed.