• Title/Summary/Keyword: Power Load Forecasting

Search Result 171, Processing Time 0.028 seconds

Annual Yearly Load Forecasting by Using Seasonal Load Characteristics With Considering Weekly Normalization (주단위 정규화를 통하여 계절별 부하특성을 고려한 연간 전력수요예측)

  • Cha, Jun-Min;Yoon, Kyoung-Ha;Ku, Bon-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.199-200
    • /
    • 2011
  • Load forecasting is very important for power system analysis and planning. This paper suggests yearly load forecasting of considering weekly normalization and seasonal load characteristics. Each weekly peak load is normalized and the average value is calculated. The new hourly peak load is seasonally collected. This method was used for yearly load forecasting. The results of the actual data and forecast data were calculated error rate by comparing.

  • PDF

Regional Long-term/Mid-term Load Forecasting using SARIMA in South Korea (계절 ARIMA 모형을 이용한 국내 지역별 전력사용량 중장기수요예측)

  • Ahn, Byung-Hoon;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8576-8584
    • /
    • 2015
  • Load forecasting is needed to make supply and demand plan for a stable supply of electricity. It is also necessary for optimal operational plan of the power system planning. In particular, in order to ensure stable power supply, long-term load forecasting is important. And regional load forecasting is important for tightening supply stability. Regional load forecasting is known to be an essential process for the optimal state composition and maintenance of the electric power system network including transmission lines and substations to meet the load required for the area. Therefore, in this paper we propose a forecasting method using SARIMA during the 12 months (long-term/mid-term) load forecasting by 16 regions of the South Korea.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Weekly maximum power demand forecasting using model in consideration of temperature estimation (기온예상치를 고려한 모델에 의한 주간최대전력수요예측)

  • 고희석;이충식;김종달;최종규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.511-516
    • /
    • 1996
  • In this paper, weekly maximum power demand forecasting method in consideration of temperature estimation using a time series model was presented. The method removing weekly, seasonal variations on the load and irregularities variation due to unknown factor was presented. The forecasting model that represent the relations between load and temperature which get a numeral expected temperature based on the past 30 years(1961~1990) temperature was constructed. Effect of holiday was removed by using a weekday change ratio, and irregularities variation was removed by using an autoregressive model. The results of load forecasting show the ability of the method in forecasting with good accuracy without suffering from the effect of seasons and holidays. Percentage error load forecasting of all seasons except summer was obtained below 2 percentage. (author). refs., figs., tabs.

  • PDF

A Study the load Forecasting Techniques using load Composition Rates (Residential load) (부하구성비를 이용한 부하예측에 관한 연구 - 주거용 부하를 중심으로 한)

  • Park, Jun-Yioul;Lim, Jae-Yun;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.82-85
    • /
    • 1993
  • The load forecasting has been essential in planning and operation of power systems. The load composition rata is also needed to analyze power-systems - load flow calculation and system stability. This paper proposes the monthly peak load forecasting methods for load groups in residential class using load composition rate and electric consumption characteristics. The proposed methods were applied to a real-scale power system and the effectiveness was turned out.

  • PDF

Long-term Load Forecasting considering economic indicator (경제지표를 고려한 장기전력부하예측 기법)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Bae, Jeong-Hyo;Ha, Tae-Hwan;Lee, Hyun-Goo;Lee, Kang-Sae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1163-1165
    • /
    • 1998
  • This paper presents a method of the regional long-term load forecasting considering economic indicator with the assuption that energy demands proportionally increases with the economic indicators. For the accurate load forecasting, it is very important to scrutinize the correlation among the regional electric power demands, economic indicator and other characteristics because load forecasting results may vary depending on many different factors such as electric power demands, gross products, social trend and so on. Three steps are microscopically and macroscopically used for the regional long-term load forecasting in order to increase the accuracy and practically of the results.

  • PDF

Short-term Electric Load Forecasting Using the Realtime Weather Information & Electric Power Pattern Analysis (실시간기상정보와 전력패턴을 이용한 단기 전력부하예측)

  • Kim, Il-Ju;Lee, Song-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.934-939
    • /
    • 2016
  • This paper made short-term electric load forecasting by using temperature data at three-hour intervals (9am, 12pm, 3pm, and 6pm) provided by the Korea Meteorological Administration (KMA). In addition, the electric power pattern was created using existing electric power data, and temperature sensitivity was derived using temperature and electric power data. We made power load forecasting program using LabVIEW, a graphic language.

Short-term Electric Load Forecasting using temperature data in Summer Season (기온데이터를 이용한 하계 단기 전력수요예측)

  • Koo, Bon-gil;Lee, Heung-Seok;Lee, Sang-wook;Lee, Hwa-Seok;Park, Juneho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.300-301
    • /
    • 2015
  • Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.

  • PDF

A new approach to short term load forecasting (전력계통부하예측에 관한 연구)

  • 양흥석
    • 전기의세계
    • /
    • v.29 no.4
    • /
    • pp.260-264
    • /
    • 1980
  • In this paper, a new algorithm is derived for short term load forecasting. The load model is represented by the state variable form to exploit the Kalman filter techniques. The suggested model has advantages that it is unnecessarty to obtain the coefficients of the harmonic components and its coefficients are not explicitly included in the model. Case studies were carried out for the hourly power demand forecasting of the Korea electrical system.

  • PDF

Application of Neural Networks to Short-Term Load Forecasting Using Electrical Load Pattern (전력부하의 유형별 단기부하예측에 신경회로망의 적용)

  • Park, Hu-Sik;Mun, Gyeong-Jun;Kim, Hyeong-Su;Hwang, Ji-Hyeon;Lee, Hwa-Seok;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 1999
  • This paper presents the methods of short-term load forecasting Kohonen neural networks and back-propagation neural networks. First, historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Next day hourly load of weekdays and weekend except holidays are forecasted. For load forecasting in summer, max-temperature and min-temperature data as well as historical hourly load date are used as inputs of load forecasting neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation(1994-95).

  • PDF