• Title/Summary/Keyword: Power Line

Search Result 6,044, Processing Time 0.035 seconds

Power Line Noise Reductions in ABR by Properly Chosen Iteration Numbers (ABR에서 반복회수 설정에 의한 전력선 잡음의 제거)

  • 안주현;김수찬;남기창;심윤주;김희남;송철규;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.241-247
    • /
    • 2001
  • ABR(auditory brainstem response) is one of the audiometry which measures objective hearing threshold level by acquiring electric evoked potentials emanated from auditory nerve system responding to an auditory stimulation. However, the obtained potentials which are largely interfered by power line noise, have extremely low SNR, thus ensemble average algorithm is generally used. The purpose of this study was to investigate the effect of iteration number in ensemble average on the reduction of the power line noise. The power line noise was modeled to be a 60 Hz sinusoidal signal and the energy of the modeled signal was calculated when it was averaged. It was verified by simulation that the energy had the periodic zero points for each stimulation rate, and 60 Hz signal induced by the power line was applied to the developed ABR system to confirm that the period of zero energy point was the same with that of the simulation. By the properly selected iteration number, power line noise could be reduced and more reliable ABR could be acquired.

  • PDF

Implementation of a High Performance Notch Filter Algorithm for Power Line Communication System (전력선 통신 시스템을 위한 고성능 Notch Filter 알고리즘 구현)

  • Nam, Yun-Ho;Jang, Dong-Won;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.159-166
    • /
    • 2010
  • As Power Line has been already installed over 60% of a residential area all over the world, Broadband Service has been possible using high-speed PLC(Power Line Communication) without new access line installed for Internet access. Because of such reason, PLC is researched as the most suitable service for Last Mile Solution. But, Power Line is designed for transmitting electric power, so peripheral Wireless Communication System is affected by a leak of electric wave. In this paper, we propose a High Performance Notch Filter algorithm in comparison with a existing notch filter for reduction of interference between existing Wireless Communication Service and Power Line Service. In addition, we implement the Notch Filter emulator appling a High Performance Notch Filter and using a embedded board.

Research on Line Overload Emergency Control Strategy Based on the Source-Load Synergy Coefficient

  • Ma, Jing;Kang, Wenbo;Thorp, James S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1079-1088
    • /
    • 2018
  • A line overload emergency control strategy based on the source-load synergy coefficient is proposed in this paper. First, the definition of the source-load synergy coefficient is introduced. When line overload is detected, the source-load branch synergy coefficient and source-load distribution synergy coefficient are calculated according to the real-time operation mode of the system. Second, the generator tripping and load shedding control node set is determined according to the source-load branch synergy coefficient. And then, according to the line overload condition, the control quantity of each control node is determined using the Double Fitness Particle Swarm Optimization (DFPSO), with minimum system economic loss as the objective function. Thus load shedding for the overloaded line could be realized. On this basis, in order to guarantee continuous and reliable power supply, on the condition that no new line overload is caused, some of the untripped generators are selected according to the source-load distribution synergy coefficient to increase power output. Thus power supply could be restored to some of the shedded loads, and the economic loss caused by emergency control could be minimized. Simulation tests on the IEEE 10-machine 39-bus system verify the effectiveness and feasibility of the proposed strategy.

Power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal

  • Cao, Xiaoling;Yan, Liangjun
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.251-261
    • /
    • 2018
  • With the urbanization in recent years, the power line interference noise in electromagnetic signal is increasing day by day, and has gradually become an unavoidable component of noises in magnetotelluric signal detection. Therefore, a kind of power line interference noise elimination method based on independent component analysis in wavelet domain for magnetotelluric signal is put forward in this paper. The method first uses wavelet decomposition to change single-channel signal into multi-channel signal, and then takes advantage of blind source separation principle of independent component analysis to eliminate power line interference noise. There is no need to choose the layer number of wavelet decomposition and the wavelet base of wavelet decomposition according to the observed signal. On the treatment effect, it is better than the previous power line interference removal method based on independent component analysis. Through the de-noising processing to actual magnetotelluric measuring data, it is shown that this method makes both the apparent resistivity curve near 50 Hz and the phase curve near 50 Hz become smoother and steadier than before processing, i.e., it effectively eliminates the power line interference noise.

Study about Power Transformer Identification Method based on Power Line Communication Technology (전력선 통신 기법을 활용한 변압기 식별 방법에 대한 고찰)

  • Byun, Hee-Jung;Choi, Sang-jun;Shon, Sugoog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1006-1009
    • /
    • 2015
  • Power-line communication technology is proposed to identify power transformers to serve customers in 3 phase -4 wires power distribution systems. Mathematical models for 3-phase power transformers, 3-phase wire lines, and customer loads are described to investigate the transmission characteristics of high frequency power line carrier. From the analysis, distribution line cable circuits have only a limited ability to carry higher frequencies. Typically power transformers in the distribution system prevent propagating the higher frequency carrier signal. The proposed method uses the limited propagation ability to identify the power transformer to serve customers. A novel power transformer identification system is designed and implemented. The system consists of a transmitter and a receiver with power-line communication module. Some experiments are conducted to verify the theoretical concepts in a big commercial building. Also some simulations are done to help and understand the concepts by using MATLAB Simulink simulator.

  • PDF

Vibration Analysis on the Variable Configurations of Tube Conveying Fluid (유체가 흐르는 튜브 라인의 기하학적 형상에 따른 진동해석)

  • 유계형;김영권;신귀수;박태원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • This paper studies the effect of vibration characteristics of tube line conveying fluid with the power steering system of bus. We modelled fluid-filled tube line using I-DEAS software to investigate vibration characteristics of the power steering tube line. And we obtained the natural frequency of tube line through finite element analysis. Analytic solutions were compared with experimental solutions to verify finite element model. We tested the tube line to examine an effect of pressure pulse by vane pump and variation of geometry of tube. From both the experimental results and the modeling results for vibration characteristics of the tube line conveying fluid, we confirmed that vibration characteristics induced by pulse propagated along the power steering tube line and resonance occurred around the natural frequency with pulse excitation.

  • PDF

Analysis on Reduction Method of Symmetrical Fault Current in a Power System with a SFCL applied into Neutral Line (전력계통의 중성선에 적용된 초전도한류기의 대칭고장전류 저감방안 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.148-152
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) applied into the neural line of a power system, which can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault, was reported to be the effective application location of the SFCL in a power system. However, the limiting operation for the symmetrical fault current like the triple line-ground fault is not effective because of properties of the balanced three-phase system. In this paper, the limiting method of the symmetrical fault current in a power system with a SFCL applied into neutral line was suggested. Through the short-circuit experiments of the three-phase fault types for the suggested method, the fault current limiting and recovery characteristics of the SFCL in the neutral line were analyzed and the effectiveness of the suggested method was described.

Design of Channel Impedance Measurement Equipment for Indoor Power Line Communications (옥내 전력선 통신 채널 임피던스 측정 장치 설계)

  • Heo, Yun-Seok
    • The Journal of Information Technology
    • /
    • v.8 no.3
    • /
    • pp.25-33
    • /
    • 2005
  • This paper describe a method for measuring line impedance as a function of frequency for an energized powerline in normal operation. A small sinusoidal signal of a powerline communication utility frequency 30khz$\sim$1Mhz band is continuously injected into the line, and a implemented impedance analyzer calculates the indoor powerline channel impedance from the measured magnitude and phase of resulting voltage and current. The impedance measurement is executed over a range of frequencies to produce a wideband impedance versus frequency characteristic. Implemented impedance analyzer can analysis powerline communication environments measuring line impedance due to load caused in indoor. And measured analysis information through the database can use to evaluate performance of modem and to decide test environment standard.

  • PDF

Implementation of Inverter Systems for DC Power Regeneration

  • Kim Kyung-Won;Yoon In-Sic;Seo Young-Min;Hong Soon-Chan;Yoon Duck-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.126-131
    • /
    • 2001
  • This paper deals with implementation of inverter systems for DC power regeneration, which can regenerate the excessive DC power from DC bus line to AC supply in substations for traction systems. From the viewpoint of both power capacity and switching losses, a three-phase square-wave inverter system is adopted. To control the regenerated power, the magnitude and phase of fundamental output voltages should be appropriately controlled in spite of the variation of input DC voltage. Inverters are operated with modified a-conduction mode to fix the potential of each arm. The overall system consists of the line-to-line voltage and line current sensors, an actual power calculator using d-q transformation method, a complex power controller with PI control scheme, a gating signal generator for modified $\alpha-conduction\;mode\;with\;\delta\;and\;\alpha$, a DPLL for frequency followup, and power circuit.

  • PDF

Stability of Solar Power System on the Control Modes of a Forced-Commutated Inverter and a Line-Commutated Inverter (Solar Power System의 인버터 토폴로지 및 제어 모드에 따른 안정도 연구)

  • Lee, Seung-Hyun;Chung, Gyo-Bum;Cho, Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.534-537
    • /
    • 1997
  • Solar power systems have become popular in the modem electric energy system. In order to supply the DC power, generated by solar cells, to the electric power system, the solar power system requires DC-to-AC power conversion. A line-commutated inverter or a forced-commutated inverter can be used in the DC-to-AC power conversion. Because of the nonlinear V-I characteristics of the solar cells, multiple operating points determined by the control mode of the inverter exist in the DC V-I state plane of the solar power system. In this paper, the stability of utility-interactive solar power system with a line-commutated inverter is analyzed at various operating points, using the eigenvalue method and the state-plane analysis technique. The stability of a forced-commutated inverter case is also anaiyzed and compared to that of the line-commutated inverter case.

  • PDF