• Title/Summary/Keyword: Power Generation Facilities

Search Result 332, Processing Time 0.022 seconds

Development of the HEMP Generation, Propagation Analysis, and Optimal Shelter Design Tool (고 고도 전자기파(HEMP) 발생과 전파해석 및 방호실 최적 설계 Tool 개발)

  • Kim, Dong Il;Min, Gyeong Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2331-2338
    • /
    • 2014
  • The HEMP threat may have acquired new, and urgent, relevance as the proliferation of nuclear weapons and missile technology accelerates of the North Korea, for example, is assessed as already having developed few atomic weapons, and is on the verge of North Korea already has missiles capable of delivering a nuclear warhead against South Korea. ITU K.78, K81 and IEC recommended its counter-measuring for the industrial facilities with navigation and sailing facilities in order to obviate the all of processor equipped system malfunctions from the EMP/HEMP but its simulation must only be done by the computer simulation which had studied on the 1960-1990 years USA/AFWL papers. This result has a significant activities to the South Korea being under the North Korea threat because all of HEMP related products was strongly limited for export. The HEMP cord which was developed newly by the KTI including the HEMP generation & propagation analysis, optimal shelter design tool, essential EM energy attenuation in multi-layered various soils and rocks and HEMP filter design tool. Especially, the least square fitting method was adopted to analysis for the EM energy attenuation in the soils and rocks because it has a various characteristics based on the many times field test reports.

Comparison of the CO2 Emissions Estimations among Four Tier Methods for the Facilities from Different Industrial Sectors in Korea (국내 산업 부문에 대한 온실가스 배출량 산정 방법 결과 비교)

  • Kim, Hee Jin;Yeo, Min Ju;Kim, Yong Pyo;Jang, Geon Woo;Shin, Won Geun;Lee, Myung Hwoon;Choi, Hyung Wook
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.195-209
    • /
    • 2012
  • There are four differentiated levels to quantify the amount of greenhouse gas emissions from a facility, which are Tier 1 to 4 based on the IPCC guidelines. In this study, the emission estimates from all tier levels were calculated to compare their total $CO_2$ emission results among themselves for seven facilities, including three sectors of electricity generation, municipal solid waste incineration, and cement manufacturing for three months between February and May 2011. Generally the measured $CO_2$ emissions by Tier 4 were higher than the calculated $CO_2$ emissions by Tier 3, which had been also observed for the power plants in the USA. It was found out that to obtain more reliable estimation for Tier 3, accurate analysis of the composition of the fuel used should be carried out. It was suggested that further refinement on the administrative guidelines be made to make it more robust.

Design of Test Site for Large-Scale Wind Turbine Performance Verification (초대형 풍력터빈 시험을 위한 실증시험장 설계)

  • Sang-Man Kim;Tae-Yoon Jeong;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.397-404
    • /
    • 2023
  • This paper designs a wind turbine test site based on international regulations for the certification of wind turbine prototypes. The maximum height of the meteorological mast installed at the test site is 140m, and power facilities capable of testing up to three wind turbines of 5MW or more are installed. The weather resources measured at the mast can be recorded and analyzed using a monitoring system. Wind turbine manufacturers can use this test site during the certification period, and the installed wind turbines can be used for continuous power generation projects. Therefore, this test site can provide fundamental data for measuring the long-term performance and durability of wind turbines, which can be used to improve models or develop new wind turbines.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Results of the Precision Monitoring (바이오가스 이용 기술지침 마련을 위한 연구(II) - 정밀모니터링 결과 중심으로)

  • Moon, HeeSung;Bae, Jisu;Park, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.65-78
    • /
    • 2018
  • According to the in social aspects such as population growth, urbanization and industrialization, development of livestock industry by meat consumption, amount of organic wastes (containing sewage sludge and food waste, animal manure, etc) has been increased annually in South Korea. Precise monitoring of 11 organic wastes biogas facilities were conducted. The organic decomposition rate of organic wastewater was 68.2 % for food wastes, 66.8 % for animal manure and 46.2 % for sewage sludge and 58.8 % for total organic wastes. As a result of analyzing the biogas characteristics before and after the pretreatment, the total average of the whole facility was measured to be 560 ppm using iron salts and desulfurization, and decreased to 40 ppm when the reduction efficiency was above 90 %. Particularly, when iron salt is injected into the digester, the treatment efficiency is about 93 %, and the average is reduced to 150 ppm. In the case of dehumidification, the absolute humidity and the relative humidity were analyzed. The dew point temperature of the facility where the dehumidification facility was well maintained as $14^{\circ}C$, the absolute humidity was $12.6g/m^3$, and the relative humidity was 35 %. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure) through precision monitoring.

A Study on the Fire Prevention Activities and Suppression Measures of Utility-Pipe Conduit (지하공동구 화재예방활동 및 진압대책에 관한 연구)

  • Lee, Jung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.63-68
    • /
    • 2010
  • Utility-Pipe Conduit is, Housing and city effectively accommodate what they absolutely need power, communications, gas, pipeline, water supply, drainage, energy facilities etc, according to expansion of urban infrastructure are derived, several ways to solve problems in, collection facilities in place are maintained and managed facility. If Utility-Pipe Conduit is damaged, as well as national security, because their impact on society as a whole, by introducing large vulnerability in the fire prevention activities and suppression measures and disaster for our situation by introducing measures, comprehensive analysis of the fire risk, it shall establish fire prevention activities and suppression through analysis of Utility-Pipe Conduit design, institutional issues, the problem of fire protection facilities, fire spread phenomenon etc. Because of Utility-Pipe Conduit is an enclosed place, so incomplete combustion due to lack of oxygen supply that there are problem such dark smoke, carbon monoxide etc, toxic combustion products and heat generation and visual impairment is an issue difficult to enter. As well as fire prevention activities, the fire In light of the particularity of the under ground than above ground fire, so this phenomenon is weak fire fighting that fire to become effective fire fighting tactics, basically it is necessary difficulty softening, non-burn softening and prevent combustion expansion of the cable is installed on the Utility-Pipe Conduit, having to considering the specificity of the response command system and relevant organizations to establish an on-site, Structural identification and other information gathering required to record of Response agencies, keep air conditioning system 24 hours and strengthening Virtual Total Training of Response agen

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.

Environmental Improvement Effect and Social Benefit of Environmental Impact Assessment: Focusing on Thermal Power Plant (환경영향평가를 통한 화력발전소의 환경개선 효과와 사회적 편익)

  • Kang, Eugene;Kim, Yumi;Moon, Nankyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.322-333
    • /
    • 2018
  • This study was carried out to measure atmospheric environmental improvement effect and estimate its social benefit of thermal power plants through Environmental Impact Assessment (EIA) for quantitative analysis about operational performances of EIA. In this study, 'EIA outcome' is defined as whether or not the system is implemented, therefore, environmental standard to be followed by each project and consultation contents were compared. In total 60 cases of thermal power plant construction projects that have been consulted over the past 10 years since 2010, major air pollutants have been significantly reduced after the implementation of EIA. The $PM_{10}$ reduced annual 3,745 tons, $NO_2$ by 74,569 tons, and $SO_2$ by 37,647 tons, which were estimated at approximately 240 billion won~5 trillion 967 billion won per year for social benefit. This means the total cost of power plant operations will be cut to 7 trillion 192 billion won~178 trillion 994 billion won over a 30-year period. The reduced amount of air pollutants emitted by energy generation facilities across the country is worth 50%, and its economic value is larger than the annual Current Health Expenditure in Korea. This is meant by the fact that all projects are subject to uniform criteria under the existing relevant regulation, but that each project plans are optimized according to the characteristics of target areas and projects through the process of EIA.

Analysis of Internal Temperature Change according to the Application of Thermal Insulation Paint and Heat Pump in Broilers (육계사의 차열 페인트 및 히트펌프 적용에 따른 내부 기온 변화 분석)

  • Jun-Seop Mun;Rack-Woo Kim;Seung-Hun Lee;Sang Min Lee;Sang Kyu Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • Heat stress causes a decrease in immunity and disease occurrence in livestock, increasing mortality and impairing productivity. In particular, chickens are very vulnerable to high temperatures compared to other livestock species because their entire body is covered with feathers and sweat glands are not developed. Currently, air conditioning systems are essential in broiler houses to prevent high-air temperature damage to broilers, but conventional cooling facilities are greatly affected by the external environment, so there are limits to their use. In this study, to propose a cooling method, thermal insulation paint and a heat pump were apply in the broiler houses to evaluate the temperature reduction effect. The heat pump experiment was to analyze the cooling effect according to the change in ventilation rate and propose an appropriate. As a result of the experiment, the heat-insulating paint reduced the temperature of the broiler houses by maximum 1-2℃, and in the broiler houses where the heat pump was operated, the temperature decrease was the largest when the ventilation rate was the lowest. When the air temperature in the house is similar to or lower than the outside air temperature, it is considered to be most effective to use a heat pump while maintaining only the minimum ventilation rate.

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.