• Title/Summary/Keyword: Power Generation

Search Result 7,191, Processing Time 0.036 seconds

A Hydration Reaction and Strength Development Properties of Cement Using Pond Ash in Coal Fired Power Plant (화력 발전소 매립회를 치환한 시멘트의 수화반응 및 강도발현 특성)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Shin, Hong-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.578-584
    • /
    • 2021
  • This study comparatively analyzed the properties of hydration reaction and strength development of four types of pond ash(PA) and fly ash(FA), aiming for the effective use of PA. The PA whose chlorine content was highest due to the seawater movement method had a faster setting time, higher cumulative heat, and greater initial strength development than those of FA due to the acceleration of the cement hydration reaction. However, the activity factor increase rate decreased after seven days of curing due to the rapid generation of early hydrates. The PA that contained impurities, such as a large amount of unburned carbon, had a delayed setting time due to the lower hydration reaction. Moreover, the strength was degraded in all curing ages. The PA whose chlorine content was lower due to the freshwater movement method and the amorphous content exhibited similar hydration reactivity and strength development characteristics compared to that of FA. The thermogravimetric analysis results verified that it had a similar level of Ca(OH)2 consumption and pozzolanic reactivity with that of FA. Conclusively, it is necessary to expand the application of the freshwater movement method and manage the ignition loss to raise PA's usability.

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

Comparative Analysis of the Joint Properties of Granite and Granitic Gneiss by Depth (심도에 따른 대전지역 화강암과 안동지역 편마암의 절리특성 비교분석)

  • Choi, Junghae
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.189-197
    • /
    • 2019
  • HLW (High Level Radioactive Waste) is one of the problems that must be solved in the countries that implement nuclear power generation. Most countries that are concerned about HLW treatment are considering complete isolation from human society by disposing them deep underground. For perfect isolation, understanding the characteristics of underground rocks is very important. In particular, understanding the characteristics of discontinuity as a path way is one of the first things in order to predict the movement of exposed nuclear species to the surface. In this study, we used 500m underground core samples obtained from granite and gneiss area. The purpose of this study is to understand the characteristics of the discontinuities in each rock type and to analyze the properties of the joints in the underground relative to the surrounding environment. For this purpose, the types of discontinuities were classified and the distribution of each discontinuity were analyzed through visual analysis of the each sample obtained at 500m underground. This study can be used as a basic data for understanding the properties of discontinuities in the rock of the survey area and it can be also used as an important data for understanding the distribution characteristics of discontinuities according to the rock types.

High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides (염화알칼리에 의한 과열기 소재의 고온부식 영향)

  • Kim, Beomjong;Jeong, Soohwa;Kim, Hyesoo;Ryu, Changkook;Lee, Uendo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2018
  • In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.

Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine (레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발)

  • Ham, Yun-Young;Lee, Jeong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.529-535
    • /
    • 2018
  • The range extender vehicle runs on a mechanism that allows the small power generation engine to start in the most efficient specific operating range to charge the battery and extend the mileage. In this study, we developed a step motor type intake air supply system that replaces existing throttle body system to develop a simple low cost control logic system. The system was applied to the existing base engine, and in order to improve the performance by increasing the amount of intake air, the effect of changing the length of the intake and exhaust manifold was experimentally examined. As a result, the Type B intake air control actuator operated by one step motor showed higher performance than the Type A in all the operation region, but the performance was lower than that of the base engine due to the increase of flow resistance. To improve this, it was confirmed that the engine performance was improved at both speeds of 2200rpm and 4300rpm when the 140mm adapter was installed in the intake manifold and when the newly designed 70mm exhaust manifold was applied. Through this process, high - precision operation control was realized by connecting the generator load to the optimized engine for the range extender electric vehicle. Experimental results showed that the speed change rate was within ${\pm}2.5%$ at 2200rpm in 1st stage and 4300rpm in 2nd stage and the speed follow-up result of 610 rpm/s was obtained when the speed was increased from 2200rpm to 4300rpm.

A Study on the Establishment of Allowable Criteria for Sailing Ships at Offshore Wind Farms (해상풍력발전단지해역 선박 통항 허용기준 설정에 관한 연구)

  • Ohn, Sung-Wook;Lee, Chang-Hyun;Kim, Cheol-Seong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.841-847
    • /
    • 2018
  • Since global energy consumption and demand for energy have dramatically risen, a focus on environmental problems and sustainability has become more important. Clean and renewable energy sources such as offshore wind power generation have received attention among new renewable energy options as alternative energy resources. Due to maintenance and operational perspectives, offshore wind farms have been planned for installation in many coastal waters. However, development of offshore wind farms faces interference from existing maritime traffic along the planned areas. In order to safely and effectively govern marine traffic in the vicinity of wind farms and inner areas, standard criteria are suggested to allow vessels to sail the internal waters of offshore wind farm areas. Therefore, the purpose of this study is to establish allowable criteria for sailing vessels and safety zones for offshore wind farms by investigating the local regulations of various offshore wind farm cases overseas. The commended inner safety zone of wind farms is proposed to be a distance of 150 % of the rotation diameter of the wind turbine rotor and a distance of 200 m from the outer wind turbine for the outer safety zone. Besides this, the allowable criteria for sailing vessels within a wind farm is proposed to have an air draft of 14.47 m south-west wind farm sea areas for a minimum margin to avoid hull contact through evaluation of the tide and height of a wind turbine. further studies will be needed to establish vessel sailing criteria among adjacent offshore wind farms as well as vessel sailing criteria within a single offshore wind farm.

A Study on the Analysis of Safety Standard and Evaluation of Safety Performance for the 5 Nm3 /hr Class Alkaline Water Electrolysis System (5 Nm3 /hr급 알카라인 수전해 시스템 안전기준 분석 및 안전성능 평가에 관한 연구)

  • Kim, Ji-Hye;Lee, Eun-Kyung;Kim, Min-Woo;Oh, Gun-Woo;Lee, Jung-Woon;Kim, Woo-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.65-75
    • /
    • 2018
  • The wind energy produced at night is being discarded because of the excess power generated at night compared to daytime. To solve this problem, In this study, we analyzed the evaluation contents for evaluation of domestic and overseas water electrolysis systems and drew contents for safety performance contents test of the water electrolysis system based on the evaluation contents. The test contents produced the efficiency measurement test, the hydrogen generated pressure test, and the hydrogen purity test. And the safety performance evaluation of the alkaline water electrolysis system of $5Nm^3/hr$ was performed based on the results. As a result, the hydrogen generation was calculated as $5.10Nm^3/hr$ and the stack efficiency was $4.97kWh/Nm^3$. The purity of the hydrogen generated was 99.993% and it was confirmed that it produced high purity hydrogen. I think will help us assess and build safety performance of water electrolysis systems in the future.

Three Level Buck Converter Utilizing Multi-bit Flying Capacitor Voltage Control (멀티비트 플라잉 커패시터의 전압제어를 이용한 3-레벨 벅 변환기)

  • So, Jin-Woo;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1006-1011
    • /
    • 2018
  • This paper proposes a three level buck converter utilizing multi-bit flying capacitor voltage control. The conventional three-level buck converter can not control the flying capacitor voltage, so that the operation is unstable or the circuit for controlling the flying capacitor voltage can not be applied to the PWM mode. Also when the load current is increased, an error occurs in the inductor voltage. The proposed structure can control the flying capacitor voltage in PWM mode by using differential difference amplifier and common mode feedback circuit. In addition, this paper proposes a 3bit flying capacitor voltage control circuit to optimize the operation of the three level buck converter depending on the load current, and a triangular wave generation circuit using the schmitt trigger circuit. The proposed 3-level buck converter is designed in $0.18{\mu}m$ CMOS process and has an input voltage range of 2.7V~3.6V and an output voltage range of 0.7V~2.4V. The operating frequency is 2MHz, the load current range is 30mA to 500mA, and the output voltage ripple is measured up to 32.5mV. The measurement results show a maximum power conversion efficiency of 85% at a load current of 130 mA.

A Study on the Problems and Improvement of the Safety Management Law of Nuclear Facilities -Focused on Safety Management of Aquatic Products- (원자력시설 안전관리 법제의 문제점과 개선방안 연구 -수산물의 안전관리를 중심으로-)

  • Lee, Woo-Do
    • The Journal of Fisheries Business Administration
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2019
  • The main purpose of this study is to analyze and examine the problems of the law systems of the safety and maintenance of nuclear facilities and to propose the improvements with respect to the related problems especialy focused on safety management of aquatic products. Therefore, the results of the paper would be helpful to build an effective management law system of safety and maintenance of nuclear facilities and fisheries products. The research methods are longitudinal and horizontal studies. This study compares domestic policies with foreign policies of nuclear plants and aquatic products. Using the above methods, examining the current system of nuclear-related laws and regulations, we have found that there exist 13 Acts including "Nuclear Safety Act", etc. Safety laws related on nuclear facilities have seven Acts including "Nuclear Safety Act", "the Act on Physical Protection and Radiological Emergency", "Radioactive waste control Act", "Act on Protective Action Guidelines against Radiation in the Natural Environment", "Special Act on Assistance to the locations of facilities for disposal low and intermediate level radioactive waste", "Korea Institute of Nuclear Safety Act". "Act on Establishment and Operation of the Nuclear Safety and Security Commission". The seven laws are composed of 119 legislations. They have 112 lower statute of eight Presidential Decrees, six Primeministrial Decrees and Ministrial Decrees, 92 administrative rules (orders), 6 legislations of local self-government aself-governing body. The concluded proposals of this paper are as follows. Firstly, we propose that the relationship between the special law and general law should be re-established. Secondly, the terms with respect to law system of safety and maintenance of nuclear plants should be redefined and specified. Thirdly, it is advisable to re-examine and re-establish the Law System for Safety and Maintenance of Nuclear Facilities. and environmental rights like the French Nuclear Safety Legislation. Lastly, inadequate legislation on the aquatic pollution damage should be re-established. It is necessary to ensure sufficient transparency as well as environmental considerations in the policy decisions of the Korean government and legislation of the National Assembly. It is necessary to further study the possibilities of accepting the implications of the French legal system as a legal system in Korea. In conclusion, the safety management of nuclear facilities is not only focused on the secondary industry and the tertiary industry centering on power generation and supply, but also on the primary industry, which is the food of the people. It is necessary to prevent damage to be foreseen. Therefore, it is judged that there should be no harm to the people caused by contaminated marine products even if the "Food Safety Law for Prevention of Radiation Pollution Damage" is enacted.

3D Porous Foam-based Triboelectric Nanogenerators for Energy Harvesting (3차원 기공구조를 이용한 정전기반 에너지 하베스팅 나노발전기 소자제조)

  • Jeon, Sangheon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Here, we present a facile route to fabricate a vertically stacked 3D porous structure-based triboelectric nanogenerator (TENG) that can be used to harvest energy from the friction in a repetitive contact-separation mode. The unit component of TENG consists of thin Al foil electrodes integrated with microstructured 3D foams such as Ni, Cu, and polyurethane (PU), which provide advantageous tribo-surfaces specifically to increase the friction area to the elastomeric counter contact surfaces (i.e., polydimethylsiloxane, PDMS). The periodic contact/separation-induced triboelectric power generation from a single unit of the 3D porous structure-based TENG was up to $0.74mW/m^2$ under a mild condition. To demonstrate the potential applications of our approach, we applied our TENGs to small-scale devices, operating 48 LEDs and capacitors. We envision that this energy harvesting technology can be expanded to the applications of sustainably operating portable electronic devices in a simple and cost-effective manner by effectively harvesting wasted energy resources from the environment.