• Title/Summary/Keyword: Power Coupling

Search Result 1,293, Processing Time 0.022 seconds

Analysis and Design of Quadruple-Active-Bridge Converter Employing Passive Power Decoupling Capability (수동 전력 비동조화가 가능한 QAB 컨버터의 분석과 설계에 관한 연구)

  • Yun, Chang-Woo;Lee, Jun-Young;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.157-164
    • /
    • 2022
  • This study proposes an enhanced quadruple-Active-Bridge (QAB) converter that can solve power coupling problems. By adopting a multiple winding transformer, the equivalent circuit of a conventional QAB converter has power couplings between arbitrary output ports. This coupling is an unintended power relationship that complicates the regulation of output voltage of the multiple ports. The proposed converter can carry out power decoupling by changing the arrangement of the coupling inductor. Power transfer equations for the proposed converter and its operating principles are analyzed in detail. The power coupling caused by the transformer's leakage inductance is verified by using a proposed coupling factor that presents the relationship between inductance ratio and coupling power. In addition, the decoupling power control performance of the proposed converter is verified by simulation and a 3 kW prototype converter.

Capacitive Coupling LLC Wireless Power Transfer Converter Through Glasses of Electric Vehicles (전기자동차의 유리를 통한 커패시티브 커플링 LLC 무선 전력 전송 컨버터)

  • You, Young-Soo;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.542-545
    • /
    • 2016
  • This work proposes a capacitive coupling-based wireless battery charging circuit that is built with vehicle glasses for electric vehicles. A capacitive coupling wireless power transfer offers many advantages, such as low metal impact and low energy transfer efficiency changes in accordance with changes in position. However, a large coupling capacitor is needed for high power transfer. Therefore, a new capacitive coupling-based wireless power transfer LLC resonant converter built with the glasses of an electric vehicle is proposed. The proposed converter is composed of coupling capacitors with glasses of an electric vehicle and two transformers for impedance transformation. The proposed LLC converter can transfer large power and obtain high efficiency with zero voltage switching. The validity and features of the proposed circuit is verified by experimental results with a 1.2 kW prototype.

Estimation of Vibrational Power Transmitted from Vibration Source to Supporting Structure - Estimation and Measurement of Vibrational Power Transmitted in the Horizontal Direction - (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정 - 수평방향으로 전달되는 진동파워의 추정 및 측정 -)

  • 김재철;주진수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1137-1143
    • /
    • 1998
  • This paper describes the method to measure of the vibrational power transmitted from the vibration source to the supporting structure in the horizontal direction. Generally, it is impossible to measure horizontal forces at the coupling points. However. the vibrational Power transmitted in the horizontal direction can be measured by using indirect method that is based on the mechanical impedance and velocities at the coupling points. We proposed the method to estimate the vibrational power when the vibration source and supporting structure cannot be separated. In this paper. the vibrational power transmitted in the horizontal direction is also estimated by using this method. The estimated and measured results of the mobilities at the coupling point and vibrational power in the horizontal direction are compared. It is shown that the estimated results agree well with the measured results. For the supporting structure with multiple coupling points, the other coupling points should be considered for measuring the vibrational power transmitted through one coupling points. We examine the effects of other coupling points and measure the vibrational power without considering the other coupling points.

  • PDF

Implementation of Wireless Power Transfer Circuit by Using Magnetic Resonant Coupling Method

  • Lho, Young-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.306-309
    • /
    • 2019
  • Wireless charging is a technology of transmitting power through an air gap to an electrical load for the purpose of energy dissemination. Compared to traditional charging with code, wireless power charging has many benefits of avoiding the hassle from connecting cables, rendering the design and fabrication of much smaller devices without the attachment of batteries, providing flexibility for devices, and enhancing energy efficiency, etc. A transmitting coil and a receiving coil for inductive coupling or magnetic resonant coupling methods are available for the near field techniques, but are not for the far field one. In this paper, the wireless power transfer (WPT) circuit by using magnetic resonant coupling method with a resonant frequency of 13.45 Mhz for the low power system is implemented to measure the power transmission efficiency in terms of mutual distance and omnidirectional angles of receiver.

Development of Signal Coupler for Power Line Communication over Medium Voltage Distribution Line (고압 배전선로 전력선 통신 신호결합장치 개발)

  • Lee Jae-Jo;Park Young-Jin;Oh Hui-Myoung;Kim Kwan-Ho;Lee Dae-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.409-416
    • /
    • 2005
  • For broadband high-data-rate power line communication with the allocated frequency bandwidth from 2 to 30 MHz on medium voltage (MV) distribution power lines, a signal coupling unit is developed. The coupling unit is composed of a coupling capacitor for coupling communication signal, a drain coil, and an impedance matching part. The coupling capacitor made of ceramic capacitor is designed for transmission property of better than 1 dB in the frequency range. The drain coil is used for preventing low frequency high voltage from junction of medium voltage power line in case that a coupling capacitor is not working properly any more. Also, using ferrite core, a novel broadband impedance matching transformer is developed. A complete coupling unit with a coupling capacitor, a drain coil, and a matching transformer is housed by polymer for good isolation and distinguishing from high voltage electric facilities. Each is fabricated and its frequency behavior is tested. Finally, complete signal couplers are equipped in a MV PLC test bed and their performance are measured. The measurement shows that the coupling capacitor works excellently.

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

6.78MHz Capacitive Coupling Wireless Power Transfer System

  • Yi, Kang Hyun
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.987-993
    • /
    • 2015
  • Wireless power transfer technologies typically include inductive coupling, magnetic resonance, and capacitive coupling methods. Among these methods, capacitive coupling wireless power transfer (CCWPT) has been studied to overcome the drawbacks of other approaches. CCWPT has many advantages such as having a simple structure, low standing power loss, reduced electromagnetic interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system consists of a 6.78MHz class D inverter with a LC low pass filter, capacitor between a transmitter and a receiver, and impedance transformers. The system is verified with a prototype for charging mobile devices.

Research on Glass Dielectric Capacitive Coupling Wireless Power Transfer Using Transparent Electrode (투명 전극을 적용한 유리 유전체 커패시티브 커플링 무선 전력 전송에 관한 연구)

  • Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.286-289
    • /
    • 2018
  • This paper tests the feasibility of using the transparent electrode as the electrode of the capacitor in order to use the vehicle glass of the electric vehicle for a capacitive coupling wireless transfer (CCWPT). Large coupling capacitance can be obtained due to large area and high permittivity using the glasses of an electric vehicle. However, if an electrode is formed on a metal such as copper, then a view cannot be guaranteed and a transparent electrode can pose a solution. Therefore, the coupling capacitor is implemented by forming a glass dielectric with an ITO transparent electrode on one side through a semiconductor deposition process. The loss of the coupling capacitor is investigated, and a 200 W CCWPT prototype is fabricated and tested for its characteristics and power transfer.

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

Mechanism Analysis and Stabilization of Three-Phase Grid-Inverter Systems Considering Frequency Coupling

  • Wang, Guoning;Du, Xiong;Shi, Ying;Tai, Heng-Ming;Ji, Yongliang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.853-862
    • /
    • 2018
  • Frequency coupling in the phase domain is a recently reported phenomenon for phase locked loop (PLL) based three-phase grid-inverter systems. This paper investigates the mechanism and stabilization method for the frequency coupling to the stability of grid-inverter systems. Self and accompanying admittance models are employed to represent the frequency coupling characteristics of the inverter, and a small signal equivalent circuit of a grid-inverter system is set up to reveal the mechanism of the frequency coupling to the system stability. The analysis reveals that the equivalent inverter admittance is changed due to the frequency coupling of the inverter, and the system stability is affected. In the end, retuning the bandwidth of the phase locked loop is presented to stabilize the three-phase grid-inverter system. Experimental results are given to verify the analysis and the stabilization scheme.