• Title/Summary/Keyword: Power Conversion System

Search Result 1,259, Processing Time 0.032 seconds

Characteristics of Pulse MIG Arc Welding with a Wire Melting Rate Change by Current Polarity Effect

  • Kim, Tae-Jin;Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook;Kim, Cheul-U
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.366-372
    • /
    • 2007
  • Joining thin aluminum alloy is difficult using most welding techniques. Many of the problems are associated with bum-through by the high heat input. Common welding techniques are TIG (Tungsten Inert Gas), MIG (Metal Inert Gas), and PULSE-MIG welding. The method provides more control of the heat balance in the welding arc by taking advantage of the different arc characteristics obtained with each of the two polarities. In this paper, we proposed a new welding method by control DSP 320C32, and the characteristic and experiment result-voltage, current, welding bead, and penetrations by this method are presented.

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

High Efficiency Power Conversion System of Non Isolated Type Applied in Fuel Cell Generator Used to Fire Prevention Installation (소방 방재설비용 연료전지 발전시스템의 비절연형 고효율 전력변환기 설계)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.19-26
    • /
    • 2006
  • In this paper, author proposes to a fuel cell generation system used to fire prevention installation at emergency. The proposed system is used with a power source of fire prevention installation in preparation for breaking of commercial power supply at emergency. A part of most power loss of the fuel cell generation system is power converter. And the major losses of power converter are switching losses of power semiconductor switches used to power conversion. This parer is designed with a high efficiency power converter of non isolated type in order to increase efficiency of fuel cell power system. The controlling switches used in power conversion system are operated with soft switching, which is applied to partial resonant method to reduce switching loss. The result is that the fuel cell power system gets to high efficiency. Some computer simulated results and experimental results are confirmed to the validity of the analytical results.

  • PDF

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Series-connected Power Conversion System Integrating a Photovoltaic Power Conditioner with a Charge-balancing Circuit (태양광 전력조절기와 배터리 전하 밸런스 회로를 통합시킨 직렬형 전력변환 시스템)

  • Lee, Hyun-Jun;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.389-394
    • /
    • 2015
  • This paper proposes a series-connected power conversion system that integrates a photovoltaic power conditioner and a charge-balancing circuit. In conventional methods, a photovoltaic power conditioner and a cell-balancing circuit are needed for photovoltaic systems with energy storage devices, which results in a complex configuration and high cost. To overcome these problems, a series-connected DC-DC power conditioning system that integrates a photovoltaic power conditioner with a charge-balancing circuit is proposed. During the generation, the system operates as power conditioner only, whereas it operates as a cell balancing circuit during the rest time. For the analysis, the operating principle of the circuit and the controller design are done by PSIM simulation. For verification, a hardware prototype with 48-W photovoltaic modules has been implemented. Results verified that the modularized photovoltaic power conversion system with a series-connected storage successfully works with the proposed method.

A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System (가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계)

  • Kim Jae-gon;Huh Uk-youl;Kim Byung-yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

An Improved Control Method for Power Conversion System under a Weak Grid by the Adoption of Virtual Resistors

  • Gao, Ning;Sang, Shun;Li, Rui;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.756-765
    • /
    • 2017
  • The control of the power conversion system (PCS) in a battery energy storage system has a challenge due to the existence of grid impedance. This paper studies an impedance model of an LCL-based PCS in the d-q domain. The feature of a PCS connected to a weak grid is unveiled by use of an impedance model and a generalized Nyquist criterion. It is shown that the interaction between grid impedance and the PCS destabilizes the cascaded system in certain cases. Therefore, this paper proposes a novel control method that adopts virtual resistors to overcome this issue. The improvement in the control loop leads the PCS to a more stable condition than the conventional method. Impedance measurement is implemented to verify the correctness of the theoretical analysis. Experimental results obtained from a down-scaled prototype indicate that the proposed control method can improve the performance of the PCS under a weak grid.

The Basic Study on Wave Energy Conversion System(II) -Estimation on Extracted Wave Power of Wave Energy Conversion Device- (파력발전시스템에 관한 기초연구(II) -파력발전기의 흡수파력 추정-)

  • 김성근;박노식
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 1990
  • The results of previous works on the wave energy conversion do not seem to be satisfactory due to irregularity, and the non-linear hydrodynamic effect which is inevitably featured due to the structural complexity of the ocean wave energy conversion device. These may cause the difficulty estimating the extracted wave power. In this paper a study on estimating the extracted wave power and its ratio. The present authors have developed another method estimating the extracted wave power using the three dimensional source distribution method, which was turned out to be an improved one. It has been observed that the present results may be used for the control of the wave energy conversion device and the optimal design has been derived from the several case studies.

  • PDF

Neural Network Controller for a Permanent Magnet Generator Applied in Wind Energy Conversion System

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • In this paper a neural network controller for achieving maximum power tracking as well as output voltage regulation, for a wind energy conversion system (WECS) employing a permanent magnet synchronous generator is proposed. The permanent magnet generator (PMG) supplies a dc load via a bridge rectifier and two buck-boost converters. Adjusting the switching frequency of the first buck-boost converter achieves maximum power tracking. Adjusting the switching frequency of the second buck-boost converter allows output voltage regulation. The on-time of the switching devices of the two converters are supplied by the developed neural network (NN). The effect of sudden changes in wind speed and/ or in reference voltage on the performance of the NN controller are explored. Simulation results showed the possibility of achieving maximum power tracking and output voltage regulation simulation with the developed neural network controllers. The results proved also the fast response and robustness of the proposed control system.