• Title/Summary/Keyword: Power Conditioning

Search Result 1,092, Processing Time 0.024 seconds

Power Conditioning System for Grid-connective PV Power Systems (계통 연계 태양광 발전 시스템을 위한 Power Conditioning 시스템)

  • Lee S. R.;Ko S. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.38-41
    • /
    • 2002
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks haying non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner ismostley current controlled type. In this paper, the proposed current control algorithm is analyzed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

A Study on the Characteristics of $CO_2$ Emissions for an Electric Powered Air Conditioning System (전력공조시스템의 $CO_2$ 배출특성에 관한 연구)

  • 장영근;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.433-440
    • /
    • 2002
  • Simulations were carried out to investigate the characteristics of $CO_2$ emissions for an electric powered air conditioning system. The $CO_2$ emissions were evaluated for various simulation parameters such as a power source distribution rate, power plant efficiency, power supply efficiency and system performance (COP). It was found that the $CO_2$ emissions were remarkably decreased by increasing the COP of the electric powered air conditioning system with storage tank. The $CO_2$emission per unit refrigeration capacity is 0.6 kg/RTh. And also, as the COP increase by 0.1, the $CO_2$ emissions decrease by 7.2%.

Implementation of Current Control Type Inverter for using Power Conditioning of Grid-connective Power System (계통의 Power Conditioning용 전류제어형 인버터의 구현)

  • Lee S. R.;Ko S. H.;Kim S. S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.226-229
    • /
    • 2003
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostly current controlled type. In this paper, the proposed current control algorithm is analysed and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation, experiment results is presented.

  • PDF

High-Efficiency Grid-Tied Power Conditioning System for Fuel Cell Power Generation

  • Jeong, Jong-Kyou;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.551-560
    • /
    • 2011
  • This paper proposes a grid-tied power conditioning system for the fuel cell power generation, which consists of a 2-stage DC-DC converter and a 3-phase PWM inverter. The 2-stage DC-DC converter boosts the fuel cell stack voltage of 26-48V up to 400V, using a hard-switching boost converter and a high-frequency unregulated LLC resonant converter. The operation of the proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. Based on the simulation results, a laboratory experimental set-up was built with a 1.2kW PEM fuel-cell stack to verify the feasibility of hardware implementation. The developed power conditioning system shows a high efficiency of 91%, which is a very positive result for the commercialization.

Design and implementation of 3 kW Photovoltaic Power Conditioning System using a Current based Maximum Power Point Tracking (전류형 MPPT를 이용한 3 kW 태양광 인버터 시스템 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1796-1801
    • /
    • 2008
  • In this paper, a new current based maximum power point tracking (CMPPT) method is proposed for a single phase photovoltaic power conditioning system and the current based MPPT modifies incremental conductance method. The current based MPPT method makes the entire control structure of the power conditioning system simple and uses an inherent current source characteristic of solar cell array. In addition, digital phase locked loop using an all pass filter is introduced to detect phase of grid voltage as well as peak voltage. Controllers about dc/dc boost converter, dc-link voltage, dc/ac inverter is designed for a coordinated operation. Furthermore, PI current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. 3kW prototype photovoltaic power conditioning system is built and its experimental results are given to verify the effectiveness of the proposed control schemes.

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

Design of Buck Converter Controller in a Photovoltaic Power Conditioning System (태양광 발전 시스템에서의 벅 컨버터 제어기 설계)

  • Park, Bong-Hee;Jeong, Seung-Whan;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Generally, buck converter controller is designed to control the output voltage of the converter. However, design of the controller in a photovoltaic power conditioning system is different from theoretical design guideline. The controller in a photovoltaic power conditioning system controls the input voltage of the converter (the output voltage of the solar cell) to meet a maximum power point tracking (MPPT) performance. In this study, a new model for buck converter used in a photovoltaic power conditioning system is proposed, which is linearized after state-space averaging in each period. Also, mathematical expression of the modeled buck converter is interpreted separately as small and large signals; therefore its appropriateness is measured to design linear voltage and current controller.

Active Mechanical Vibration Control of Rotary Compressors for Air-conditioning Systems

  • Park, Cheon-Su;Kim, SeHwan;Park, Gwi-Geun;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.1003-1010
    • /
    • 2012
  • Recent power electronics and variable-frequency motor drive technologies have been applied to air conditioners to improve efficiency and power density. However, the mechanical vibrations and acoustic noise resulting from the compressor still remain as a serious problem. This paper presents the development and implementation of an online disturbance state-filter for the suppression of multiple unknown and time-varying vibrations of air conditioning systems. The proposed design has a form of the state-filter based on a Luenburger-style closed-loop speed observer. An active vibration decoupling strategy with an estimated disturbance is provided, which manipulates a motor torque command. Since the proposed estimation does not require any additional transducers or hardware for obtaining real-time information upon disturbances, it is suitable for retrofitting industrial air conditioners.

A Study on the Grid-connective Control Algorithm for PV Power Systems (태양광 발전 시스템을 위한 계통연계제어 알고리즘에 관한 연구)

  • 이성룡;전칠환;고성훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.448-451
    • /
    • 2002
  • Increasing of the use nonlinear power electronics equipments, power conditioning systems have been researched and developed for many years to compensate the harmonic disturbances and the reactive power. The main function of power conditioning systems is to reduce harmonic distortions, since extensive surveys quantify the problems associated with electric networks having non-linear loads. The main function of power conditioner compensates the current instead of the voltage. Therefore the inverter used in power conditioner is mostley current controlled type. In this paper, the proposed current control algorithm is analized and discussed about how to design the controller which can apply power conditioning operation for grid-connective PV power system. And also proposed control system. To verify the proposed current control algorithm, a comprehensive evaluation with theoretical analysis, simulation results is presented.

  • PDF

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.