• Title/Summary/Keyword: Power Cables

Search Result 675, Processing Time 0.022 seconds

Recycling of Waste XLPE Using a Modular Intermeshing Co-Rotating Twin Screw Extruder (모듈라 치합형 동방향회전 이축 스크류식 압출기를 이용한 폐 XLPE의 재활용)

  • Bang, Dae-Suk;Oh, Soo-Seok;Lee, Jong-Keun
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.131-141
    • /
    • 2004
  • The recycling of waste XLPE(crosslinked polyethylene), which is a major source of scraps from high voltage power transmission cables, has been discussed. The waste XLPE scraps were ground into fine powder with various sizes from less than $100{\mu}m$ up to about $1000{\mu}m$ using two types of tailor-made pulverizers. The compounds were prepared in a modular intermeshing co-rotating twin screw extruder at various conditions such as different compositions, types and powder sizes of waste XLPE, screw configurations and various polymer matrices (LDPE, HDPE, PP, PS). The mechanical and rheological properties and the fracture surface or the compounds were investigated. It was found that an improved impact strength was obtained from the compound with white XLPE powder pulverized from the scraps without outer/inner semi-conductive layers. Generally, the impact strength increases with the content of XLPE but decreases with the size of XLPE. Especially for LDPE, the extrusion was possible up to 80 wt% loading of XLPE. Also, the impact strength increases with the number of kneading disc blocks in the given screw configurations. The melt viscosity of the compounds increases with increasing XLPE loading. However, the higher shear thinning behavior of the compounds at common shear rates implies proper processibility of the compounds. In addition, the impact strength for other polymer matrices used increases with XLPE and it is noticeable that the impact strength of PS/XLPE (80/20 wt%) compound was improved twice that of pure PS.

A study on digital locking device design using detection distance 13.4mm of human body sensing type magnetic field coil (인체 감지형 자기장 코일의 감지거리 13.4mm를 이용한 디지털 잠금장치 설계에 관한 연구)

  • Lee, In-Sang;Song, Je-Ho;Bang, Jun-Ho;Lee, You-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • This study evaluated a digital locking device design using detection distance of 13.4mm of a human body sensing type magnetic field coil. In contrast to digital locking devices that are used nowadays, the existing serial number entering buttons, lighting, number cover, corresponding pcb, exterior case, and data delivery cables have been deleted and are only composed of control ON/OFF power switches and emergency terminals. When the magnetic field coil substrates installed inside the inner case detects the electric resistance delivered from the opposite side of the 12mm interval exterior contacting the glass body part, the corresponding induced current flows. At this time, the magnetic field coil takes the role as a sensor when coil frequency of the circular coil is transformed. The magnetic coil as a sensor detects a change in the oscillation frequency output before and after the body is detected. This is then amplified to larger than 2,000%, transformed into digital signals, and delivered to exclusive software to compare and search for embedded data. The detection time followed by the touch area of the body standard to a $12.8{\emptyset}$ magnetic field coil was 30% contrast at 0.08sec and 80% contrast at 0.03sec, in which the detection distance was 13.4mm, showing the best level.

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.

Why A Multimedia Approach to English Education\ulcorner

  • Keem, Sung-uk
    • Proceedings of the KSPS conference
    • /
    • 1997.07a
    • /
    • pp.176-178
    • /
    • 1997
  • To make a long story short I made up my mind to experiment with a multimedia approach to my classroom presentations two years ago because my ways of giving instructions bored the pants off me as well as my students. My favorite ways used to be sometimes referred to as classical or traditional ones, heavily dependent on the three elements: teacher's mouth, books, and chalk. Some call it the 'MBC method'. To top it off, I tried audio-visuals such as tape recorders, cassette players, VTR, pictures, and you name it, that could help improve my teaching method. And yet I have been unhappy about the results by a trial and error approach. I was determined to look for a better way that would ensure my satisfaction in the first place. What really turned me on was a multimedia CD ROM title, ELLIS (English Language Learning Instructional Systems) developed by Dr. Frank Otto. This is an integrated system of learning English based on advanced computer technology. Inspired by the utility and potential of such a multimedia system for regular classroom or lab instructions, I designed a simple but practical multimedia language learning laboratory in 1994 for the first time in Korea(perhaps for the first time in the world). It was high time that the conventional type of language laboratory(audio-passive) at Hahnnam be replaced because of wear and tear. Prior to this development, in 1991, I put a first CALL(Computer Assisted Language Learning) laboratory equipped with 35 personal computers(286), where students were encouraged to practise English typing, word processing and study English grammar, English vocabulary, and English composition. The first multimedia language learning laboratory was composed of 1) a multimedia personal computer(486DX2 then, now 586), 2) VGA multipliers that enable simultaneous viewing of the screen at control of the instructor, 3) an amplifIer, 4) loud speakers, 5)student monitors, 6) student tables to seat three students(a monitor for two students is more realistic, though), 7) student chairs, 8) an instructor table, and 9) cables. It was augmented later with an Internet hookup. The beauty of this type of multimedia language learning laboratory is the economy of furnishing and maintaining it. There is no need of darkening the facilities, which is a must when an LCD/beam projector is preferred in the laboratory. It is headset free, which proved to make students exasperated when worn more than- twenty minutes. In the previous semester I taught three different subjects: Freshman English Lab, English Phonetics, and Listening Comprehension Intermediate. I used CD ROM titles like ELLIS, Master Pronunciation, English Tripple Play Plus, English Arcade, Living Books, Q-Steps, English Discoveries, Compton's Encyclopedia. On the other hand, I managed to put all teaching materials into PowerPoint, where letters, photo, graphic, animation, audio, and video files are orderly stored in terms of slides. It takes time for me to prepare my teaching materials via PowerPoint, but it is a wonderful tool for the sake of presentations. And it is worth trying as long as I can entertain my students in such a way. Once everything is put into the computer, I feel relaxed and a bit excited watching my students enjoy my presentations. It appears to be great fun for students because they have never experienced this type of instruction. This is how I freed myself from having to manipulate a cassette tape player, VTR, and write on the board. The student monitors in front of them seem to help them concentrate on what they see, combined with what they hear. All I have to do is to simply click a mouse to give presentations and explanations, when necessary. I use a remote mouse, which prevents me from sitting at the instructor table. Instead, I can walk around in the room and enjoy freer interactions with students. Using this instrument, I can also have my students participate in the presentation. In particular, I invite my students to manipulate the computer using the remote mouse from the student's seat not from the instructor's seat. Every student appears to be fascinated with my multimedia approach to English teaching because of its unique nature as a new teaching tool as we face the 21st century. They all agree that the multimedia way is an interesting and fascinating way of learning to satisfy their needs. Above all, it helps lighten their drudgery in the classroom. They feel other subjects taught by other teachers should be treated in the same fashion. A multimedia approach to education is impossible without the advent of hi-tech computers, of which multi functions are integrated into a unified system, i.e., a personal computer. If you have computer-phobia, make quick friends with it; the sooner, the better. It can be a wonderful assistant to you. It is the Internet that I pay close attention to in conjunction with the multimedia approach to English education. Via e-mail system, I encourage my students to write to me in English. I encourage them to enjoy chatting with people all over the world. I also encourage them to visit the sites where they offer study courses in English conversation, vocabulary, idiomatic expressions, reading, and writing. I help them search any subject they want to via World Wide Web. Some day in the near future it will be the hub of learning for everybody. It will eventually free students from books, teachers, libraries, classrooms, and boredom. I will keep exploring better ways to give satisfying instructions to my students who deserve my entertainment.

  • PDF

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).