• Title/Summary/Keyword: Power Cables

Search Result 675, Processing Time 0.025 seconds

Health Status of Electric Utility Workers Exposed to Extremely Low Frequency Electromagnetic Field (ELF-EMF) (근로자들의 극저주파 전자파 노출 수준에 따른 인체 영향 평가)

  • Park, Kyoung-Ho;Ahn, Yong-Ho;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.3
    • /
    • pp.220-227
    • /
    • 2005
  • Recently, the use of an electrical apparatus has brought up concerns of health risks from exposure to electromagnetic fields. EMF is composed of electric fields and magnetic fields. Heavy exposure to EMF can occur only in the vicinity of high-voltage overhead transmission lines, close to transformers and underground cables, and also close to large electrical machinery. In this thesis I have investigated the hypothesis of the correlation between occupational exposure to ELF-EMF and the risks of leukemia, anemia, cancer. Therefore, the aim of this study is to investigate whether or not ELF-EMF emitted from electric power stations and transformer substations affect some hematological parameters and tumor markers of electric utility workers. The hematological test results and tumor markers under investigation were similar in the two groups but some of parameters such as RBC, AFP, LDH showed significant difference between the two groups from two sample t-test (p<0.05). The exposure group showed increased LDH level compared to the control group by two sample t-tests. In addition, the abnormal LDH level in the exposure group was observed to be clinically significant by ${\chi}^2$-test. However, the levels of RBC, AFP observed were not clinically significant by ${\chi}^2$-test (p>0.05). These results suggested that ELF-EMF does not affect most blood test parameters except LDH of electric utility workers.

  • PDF

Development of ROV Trencher URI-T and its Sea Trial (URI-T, 해저 케이블 매설용 ROV 트렌처 개발 및 실해역 성능 검증)

  • Kang, Hyungjoo;Lee, Mun-Jik;Cho, Gun Rae;Ki, Geonhui;Kim, Min-Gyu;Li, Ji-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.300-311
    • /
    • 2019
  • An ROV trencher is a type of heavy-duty work class ROV equipped with high-pressure water jet tools for cutting into the sea floor and burying cables. This kind of trencher is mostly used for PLIB operations. This paper introduces the development of this kind of ROV trencher, which has a 698 kW power system, with a 250 kW hydraulic system and two 224 kW water jet systems. The project was launched in January 2014. After four years of design, manufacturing, and system integration, we carried out two sea trials near the Yeongilman port (about 20-30 m in depth) in Pohang to evaluate the system performance in November 2017 and August 2018. Through tests, we found that most of specifications were satisfied, including a maximum bury depth of 3 m, maximum bury speed of 2 km/h, and maximum forward speed of 1.54 m/s.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Analysis of Geological Factors for Risk Assessment in Deep Rock Excavation in South Korea (한국의 대심도 암반 굴착 위험도 산정을 위한 인자 분석)

  • Ihm, Myeong Hyeok;Lee, Hana
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.211-220
    • /
    • 2021
  • Tunnel collapse often occurs during deep underground tunneling (> 40 m depth) in South Korea. Natural cavities as well as water supply pipes, sewer pipes, electric power cables, artificial cavities created by subway construction are complexly distributed in the artificial ground in the shallow depths of the urban area. For deep tunnel excavation, it is necessary to understand the properties of the ground which is characterized by porous elements and various geological structures, and their influence on the stability of the ground. This study analyzed geological factors for risk assessment in deep excavation in South Korea based on domestic and overseas case study. As a result, a total of 7 categories and 38 factors were derived. Factors with high weights were fault and fault clay, differential stress, rock type, groundwater and mud inrush, uniaxial compressive strength, cross-sectional area of tunnel, overburden thickness, karst and valley terrain, fold, limestone alternation, fluctuation of groundwater table, tunnel depth, dyke, RQD, joint characteristics, anisotropy, rockburst and so forth.

Structural Health Monitoring System for Large-Bridge-Based LoRa LPWAN (LoRa LPWAN 기반의 대형 교량 구조건전성 모니터링 시스템)

  • Jin-Oh Park;Ki-Don Kim;Kyung-soo Kim;Sang-Heon Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.49-56
    • /
    • 2023
  • With the development of technology worldwide, bridges are becoming larger, and the number of old bridges is also rapidly increasing. Monitoring the structural health of large, aging bridges is essential to preventing large-scale accidents. In this study, the application of a LoRa low-power wide-area network (LPWAN)-based wireless measurement system was investigated, and a LoRa wireless measurement system was established in the cable-stayed bridge section of Cheonsa Bridge, located in Shinan-gun, Jeollanam-do, Korea. The applicability of the LoRa LPWAN-based wireless monitoring system to large marine bridges was reviewed by comparing the performance and economic feasibility with wire-based monitoring systems that were built and operated by establishing a measurement system for the pylons, cables, and reinforcing girders of the bridge.

Analysis of Near Field for Base Station Panel Antenna(4 X 2 Dipole Array) (기지국용 판넬 안테나(4 X 2 Dipole Array)의 근역장 분석)

  • Lee, Dugro;Park, Ju-Derk;Choi, Jae-Ic;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2004
  • In this paper, power density in near field is calculated about analytic object which has comparatively large volume in considering used wavelength such as cellular base station antenna. Panel sector antenna which is used widespreadly in domestic cellular wireless communication system is modeled and electromagnetic field distribution in reactive near field region is calculated by FDTD (Finite Difference Time Domain) method. After that, antenna gain in far field region is obtain by near to far transformation. Power spectral density in radiated near field is calculated in applying to gain-based model with antenna gain in far field. Finally, compliance distance is obtained in considering the result from radiated near field calculation and basic restrictions on occupational and general public exposure limits in ICNIRP guideline. In the center of main radiating position, the result from gain-based model is -14.55 ㏈m and the result from surface scanning method is -15.75 ㏈m. When the losses from cables and connectors used in measurement are considered, the results from gain-based model and surface scanning method are nearly coincident.

Partial Discharge Characteristics and Localization of Void Defects in XLPE Cable (XLPE 케이블에서 보이드 결함의 부분방전 특성과 위치추정)

  • Park, Seo-Jun;Hwang, Seong-Cheol;Wang, Guoming;Kil, Gyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Research on condition monitoring and diagnosis of power facilities has been conducted to improve the safety and reliability of electric power supply. Although insulation diagnostic techniques for unit equipment such as gas-insulated switchgears and transformers have been developed rapidly, studies on monitoring of cables have only included aspects such as whether defects exist and partial discharge (PD) detection; other characteristics and features have not been discussed. Therefore, this paper dealt with PD characteristics against void sizes and positions, and with defect localization in XLPE cable. Four types of defects with different sizes and positions were simulated and PD pulses were detected using a high frequency current transformer (HFCT) with a frequency range of 150kHz~30MHz. The results showed that the apparent charge increased when the defect was adjacent to the conductor; the pulse count in the negative half of the applied voltage was about 20% higher than that in the positive half. In addition, the defect location was calculated by time-domain reflectometry (TDR) method, it was revealed that the defect could be localized with an error of less than1m in a 50m cable.

Cable Fault Detection Improvement of STDR Using Reference Signal Elimination (인가신호 제거를 이용한 STDR의 케이블 고장 검출 성능 향상)

  • Jeon, Jeong-Chay;Kim, Taek-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.450-456
    • /
    • 2016
  • STDR (sequence time domain reflectometry) to detect a cable fault using a pseudo noise sequence as a reference signal, and time correlation analysis between the reference signal and reflection signal is robust to noisy environments and can detect intermittent faults including open faults and short circuits. On the other hand, if the distance of the fault location is far away or the fault type is a soft fault, attenuation of the reflected signal becomes larger; hence the correlation coefficient in the STDR becomes smaller, which makes fault detection difficult and the measurement error larger. In addition, automation of the fault location by detection of phase and peak value becomes difficult. Therefore, to improve the cable fault detection of a conventional STDR, this paper proposes the algorithm in that the peak value of the correlation coefficient of the reference signal is detected, and a peak value of the correlation coefficient of the reflected signal is then detected after removing the reference signal. The performance of the proposed method was validated experimentally in low-voltage power cables. The performance evaluation showed that the proposed method can identify whether a fault occurred more accurately and can track the fault locations better than conventional STDR despite the signal attenuation. In addition, there was no error of an automatic fault type and its location by the detection of the phase and peak value through the elimination of the reference signal and normalization of the correlation coefficient.

Development of a Mountainous Area Monitoring System based on IoT Technology (IoT 기술 기반의 산악지 모니터링 시스템 개발)

  • Kim, Kyoon-Tai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.437-446
    • /
    • 2017
  • 70 percent of Korea's territory is covered with mountains, whose difficult conditions can cause damage to facilities. Recently, the demand for facilities related to outdoor activities including monorails has been on the rise, and such facilities are much more likely to become damaged. For this reason, a monitoring system applying IoT to mountainous areas was developed and its applicability is evaluated in this study. The current status of the existing mountainous facilities and monitoring systems were reviewed, and the current wired monitoring technology was analyzed. A scenario for IoT-based monitoring was developed, and then sensor nodes were developed, which include an RF-communication module and interface, power-supply and solar-cell. A testbed was set up at K University. The same data was collected by the wireless system as had been collected by the wired one. The study findings are as follows. Firstly, by using the wireless system, it is estimated that the construction duration can be reduced by about 25 percent, while the construction costs can be reduced by about 3~52 percent. Secondly, the safety of the construction workers can be improved by making the working conditions less dangerous, such as by eliminating the need to transport cables.

Analysis of Parameters Effecting MOBILE WiMAX Connectivity (모바일 WiMAX의 연결성 매개변수 효율 분석)

  • Chowdhury, Olly Roy;Kaiser, Arif;Kabir, Ekramul;Aditya, Subrata Kumar;Park, Jang-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • Worldwide Interoperability for Microwave Access (WiMAX) is an efficient technology for 20th century communication system. The technology provides broadband speed without the need for cables and is based on the IEEE 802.16 standard(also called Wireless MAN). Mobile WiMAX is defined as IEEE802.16e which is advanced and efficient technology for mobile telecommunication rather than GSM, CDMA technology. In this work link budget calculation for WiMAX have been done. Cell range have been calculated over digital modulations and they are BPSK, QPSK and QAM. Here different types of models like Cost 231 model have been used for different types of areas like open, rural and urban areas and Erceg-Greenstein model for sub-urban areas. Effect of various parameters like frequency, base station antenna height, transmission power and SNR over cell range have been studied. Analysis have done for both uplink and downlink.