• Title/Summary/Keyword: Power Amplitude

Search Result 1,053, Processing Time 0.025 seconds

Analysis of Step-up AC/DC Converter (승압형 AC/DC 전력 변환기의 해석)

  • Park, S.Y.;Park, I.G.;Kang, Y.S.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.340-343
    • /
    • 1990
  • Recently, Power Electronics system increase makes harmonics and low input power factor problem. In this paper present new analysis method of PWM Boost AC/DC Converter. This PWM AC/DC Converter is capability of unity power factor, control of DC side voltage level, generation, and near sinusoidal current in 3-phase line. The control of this type of converter is widely discussed. And this paper propose new phase convert function and analysis in steady state of system to obtain amplitude and phaser of switching function. This switching function is general solution and it can use in high power approach. And this control method show the clear meaning of control variable. This paper propose new analysis method of Boost AC/DC Converter of steady state and 3-phase 2KW experimental system show its validity.

  • PDF

A Study on Feedforward System for IMT-2000

  • Jeon Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.505-513
    • /
    • 2006
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping. because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt. the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

The Time Variant Power Signal Processing of Wind Generator using Buneman Frequency Estimator Algorithm (부너맨 주파수 추정 알고리듬을 이용한 풍력발전기 가변 전력신호 처리에 관한 연구)

  • Choi, Sang-Yule;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.138-146
    • /
    • 2010
  • On wind turbine generators, the speed and volume of the wind affect the turbine angle speed which finally determines the output level of the electric power. However it is very difficult to forecast correctly the future power output and quality based on previous fixed sampling methods. This paper proposes a variable sampling method based on Buneman frequency estimation algorithm to reflect the variations of the frequency and amplitude on wind power outputs. The proposed method is also verified through the performance test by comparing with the results from previous fixed sampling methods and the real measurement data.

Harmonic and Interhamonic Detection and Estimation of Power Signal using Subband MUSIC/ESPRIT (부밴드 MUSIC/ESPRIT를 이용한 전력신호 고조파 및 중간고조파 검출 및 추정)

  • Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.149-158
    • /
    • 2015
  • This paper proposes a subband filtering technique to the MUSIC and the ESPRIT algorithm for estimating the magnitude and frequency of the harmonics of power signal. In proposed method, the input power signal is decomposed to the odd harmonics and the even harmonics respectively by the filter bank system. The amplitude and the frequency estimation of the decomposed harmonics are carried out using the MUSIC and the ESPRIT method. Subband filtering can reduce the autocorrelation matrix size of input data, and spectrum leakage between adjacent harmonics. Therefore, this subband technique has advantage in computational cost and estimation accuracy compared to fullband MUSIC and ESPRIT. To demonstrate the performance of the method, computer simulations are performed to the synthesized input signal, and experiment results are compared in subband and fullband cases.

A Study on Feedforward System for IMT-2000

  • Jeon, Joong-Sung;Choi, Dong-Muk;Kim, Min-Jung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1176-1185
    • /
    • 2005
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth. Experimental results are presented for IMT-2000 frequency band. The center frequency of the feedforward amplifier is 2140 MHz with 60 MHz bandwidth. When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 21 dB. In this case, the output power of feedforward amplifier reduced 3.5 dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7.2 % for multicarrier signals, 59 dBc for ACPR.

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

A study on the Estimation Technique of Frequency in the Power System using Digital Signal Processing (디지털 신호처리기법을 이용한 전력계통 주파수 추정 기법에 관한 연구)

  • Nam, S.B.;Park, C.W.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.175-177
    • /
    • 2001
  • Frequency and phasor are the most important quantities in power system operation. Frequency reflects the dynamic energy balance between load and generating power. To estimate of power system frequency, an accurate digital tracking algorithm by using phasor angle difference is presented. For an evaluation of the proposed technique, simulations by EMTP have been performed. Test results were showed the algorithm's accuracy under the effect of noise and changes in frequency and amplitude on the input signal.

  • PDF

A study on the DC Capacitor Voltage control of 5 Level Inverter for Static Var Compensator (자려식 SVC용 5레벨 인버터의 직류측 콘덴서 전압제어에 관한 연구)

  • Kim, Jong-Yun;Harada, Hedehoro;Lyu, Sung-Kak;Oh, Jin-Suck;Kim, Yoon-Sik;Noh, Chang-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1899-1901
    • /
    • 1998
  • A five-level VSI(Voltage Source Inverter) is introduced as a SVC(Static Var Compensator) like a large scale power source. The problems in using SVC are that the power device can easily be destroyed by voltage unbalance and accurate reactive power control is difficult because of voltage variation. A asymmetrical PAM(Pulse Amplitude Modulation) switching pattern is proposed to solve this problem and analyze both fundamental component and harmonic current in the system. Through experimental results of 3.5 kVA experimental test system. It is confirmed that DC capacitor voltage can be controlled by asymmetrical PAM switching pattern control.

  • PDF

Supercapacitor of Auxiliary Electric Power Source in Industrial Safety for High Output (고출력용 산업안전 보조전원의 Supercapacitor)

  • 허진우;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.335-343
    • /
    • 2003
  • In the electrode fabrication of unit cell, it was ascertained that electrochemical characteristics were greatly increased with 90 wt.% of BP-20, 5 wt.% of Super P and 5 wt.% of mixed binder [P(VdF-co-HFP) : PVP =7 : 3] The self-discharge of unit cell showed that diffusion process was controlled by the ion concentration difference of initial electrolyte due to the characteristics of Electric Double Layer Capacitor (EDLC) charged by ion adsorption in the beginning, but this by current leakage through the double-layer at the electrode/electrolyte interface had a minor effect and voltages of curves were remained constant regardless of electrode material. The electrochemical characteristics of 2.3 V/3,000 F grade EDLC were as follows: 0.35 m of DC-ESR (100 A discharge), 0.14 mof AC-ESR (AC amplitude 100 mV), 2.80 Wh/kg (3.73 Wh/L) of energy density and 4.64 kW /kg (6.19 kW/L) of power density. Power output was compatible with electric vehicle applications, uninterrupted power supply and engine starter, in due consideration of Ragone relations.

  • PDF

An OTA with Positive Feedback Bias Control for Power Adaptation Proportional to Analog Workloads

  • Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • This paper reports an adaptive positive feedback bias control technique for operational transconductance amplifiers to adjust the bias current based on the output current monitored by a current replica circuit. This technique enables operational transconductance amplifiers to quickly adapt their power consumption to various analog workloads when they are configured with negative feedback. To prove the concept, a test voltage follower is fabricated in $0.5-{\mu}m$ CMOS technology. Measurement result shows that the power consumption of the test voltage follower is approximately linearly proportional to the load capacitance, the signal frequency, and the signal amplitude for sinusoidal inputs as well as square pulses.