• Title/Summary/Keyword: Powder loss

Search Result 728, Processing Time 0.024 seconds

Effect of Letinus edodes, Agaricus bisporus and Pear Powder on Tenderization of Beef Eye of Round (표고버섯, 양송이버섯, 배를 첨가한 홍두깨살의 연육 효과)

  • Nam, Hyong-Kyoung;Kim, Ho-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1009-1015
    • /
    • 2022
  • The purpose of this study was to investigate the effects of protease in Letinus edodes, Agaricus bisporus and Pear powder after freeze drying which has the ratio of 3% on the Tenderness of the Beef Eye of Round muscle. It were marinated in distilled water (Control), 3% Letinus edodes powder (L3), 3% Agaricus bisporus powder (A3), and 3% Pear powder (P3). As a result, enzyme activities were highest in Agaricus bisporus (p<0.001). There are significant difference in pH (p<0.001), color of the beef were slightly different between the C (control) group and the sample groups. The cooking loss showed the lowest value in the control and the highest value in the water holding capacity of Agaricus bisporus. In addition, Agaricus bisporus showed the lowest shear force values than the other sample groups(p<0.001).

Coercivity of Nd-Fe-B-type Fine Particles Prepared from Different Precursor Materials

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Fine Nd-Fe-B-type particles were prepared by ball milling of different types of Nd-Fe-B precursor materials, such as die-upset magnet, HDDR-treated material, and sintered magnets. Coercivity dependence on the grain and particle size of the powder was investigated. Coercivity of the milled particles was reduced as the particle size decreased, and the extent of coercivity loss was dependent upon the precursor material. Coercivity loss in the finely milled particles was attributed to the surface oxidation. The extent of coercivity loss in the fine particles was closely linked to grain size of the precursor materials. Coercivity loss was more profound for the fine particles with larger grain size. Contrary to the fine particles from the sintered magnets with larger grain size the fine particles (~10 um) from the die-upset magnet and HDDR-treated material with much finer grain size still retained high coercivity (> 10 kOe for die-upset magnet, > 4 kOe for HDDR-treated material).

Comparison of Oven-drying Methods for Determination of Moisture Content in Feed Ingredients

  • Ahn, J.Y.;Kil, D.Y.;Kong, C.;Kim, B.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1615-1622
    • /
    • 2014
  • An accurate assessment of moisture content in feed ingredients is important because moisture influences the nutritional evaluation of feedstuffs. The objective of this study was to evaluate various methods for moisture content determination. In Exp. 1, the weight loss on drying (LOD) of corn, soybean meal (SBM), distillers dried grains with solubles (DDGS), whey permeate, whey powder, spray-dried porcine plasma (SDPP), fish meal, and a mixed diet of these 7 ingredients were measured by oven drying at $135^{\circ}C$ for 2 h. Additionally, the samples were dried at $105^{\circ}C$ for 3, 6, 9, 12, or 15 h. The LOD contents of the DDGS, whey permeate, and whey powder measured by drying at $135^{\circ}C$ for 2 h were greater than the values measured by drying at $105^{\circ}C$ for 3 h (p<0.05). All samples except SDPP (p = 0.70) dried at $105^{\circ}C$ for 6, 9, 12, or 15 h caused more LOD compared with the samples dried for at $105^{\circ}C$ for 3 h (p<0.05). The LOD contents of the individual ingredients were additive when dried at $105^{\circ}C$ regardless of drying time. In Exp. 2, moisture contents of corn, SBM, wheat, whey permeate, whey powder, lactose, and 2 sources of DDGS (DDGS1 and DDGS2) were measured by the Karl Fischer method, oven drying at $135^{\circ}C$ for 2 h, and oven drying at $125^{\circ}C$, $115^{\circ}C$, $105^{\circ}C$, or $95^{\circ}C$ for increasing drying time from 1 to 24 h. Drying samples at $135^{\circ}C$ for 2 h resulted in higher moisture content in whey permeate (7.5% vs 3.0%), whey powder (7.7% vs 3.8%), DDGS1 (11.4% vs 7.5%), and DDGS2 (13.1% vs 8.8%) compared with the Karl Fischer method (p<0.05). Whey permeate and whey powder were considerably darkened as the drying time increased. In conclusion, drying samples at $135^{\circ}C$ for 2 h is not appropriate for determining the moisture content in whey permeate, whey powder, or DDGS as well as the mixed diet containing these ingredients. The oven-drying method at $105^{\circ}C$ for 5 to 6 h appears to be appropriate for whey permeate and whey powder, and at $105^{\circ}C$ for 2 to 3 h for DDGS.

Variation of Magnetic Properties of Fe-Si Compressed Cores with Si Content (Si 함량에 따른 Fe-Si 압분코어의 자기적 특성)

  • Jang, Pyung-Woo;Lee, Bong-Han;Choi, Gwang-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Fe-3, 4.2 and 6.8% Si compressed cores were fabricated, and then electrical resistivity, AC and DC magnetic properties, microhardness, and other properties were analyzed in order to know whether best soft magnetic properties could be also obtained in an Fe-Si compressed core with the well-known composition of Fe-6.5% Si. With increasing the silicon content, eddy current loss and hysteresis loss decreased and increased, respectively, so that a minimum total loss was not obtained in the well-known Fe-6.8 % Si cores, but obtained in the Fe-4.2 % Si cores. Also electrical resistivity of the cores and hardness of the particles increased monotonously with silicon content so that compaction ratio of the cores decreased. B2 and $DO_3$ ordered phase could be observed only in Fe-6.8% Si powder. A minimum loss and highest permeability of the Fe-4.2 % Si cores can be explained by the ratio of specific electrical resistivity of insulator to that of magnetic particles, micro-hardness, compaction ratio and demagnetization coefficient of the Fe-Si powder particles with silicon content.

AC loss Characteristics under Critical Current Degradation of HTS Tapes (고온 초전도 tape의 임계전류 저하에 따른 교류손실 특성)

  • Kim H. J.;Cho J. W.;Kim J. H.;Sim K. D.;Kwag D. S.;Bae J. H.;Kim H. J.;Seong K. S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.29-33
    • /
    • 2005
  • Critical current$(I_c)$ degradation of High $T_c$ Superconducting(HTS) tapes and AC loss under mechanical load is one of the hottest issues in HTS development and application. Mechanical load reduces the critical current of superconducting wire, and the $I_c$ degradation affects the AC loss of the wire. We measured the $I_c$ degradation and AC loss under tension and bending of Bi-2223 tapes made by 'Powder-in-Tube' technique at 77K with self-field. Also, we have studied the frequency characteristics on self-field AC loss in multi-filamentary Bi-2223/Ag tape at 77K. The measurement results and discussions on the relationship between $I_c$ degradation and AC loss are presented.

Ac Loss Characteristics under Critical Current Degradation of HTS Tapes (고온 초전도체의 임계전류 저하에 따른 교류 손실 특성)

  • Kim, Hae-Joon;Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Kwag, Dong-Soon;Kim, Hae-Jong;Seong, Ki-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.286-287
    • /
    • 2005
  • Critical current(Ic) degradation of HTS tapes and AC loss under mechanical load is one of the hottest issues in HTS development and application. Mechanical load reduces the critical current of superconducting wire, and the Ie degradation affects the AC loss of the wire. We measured the Ie degradation and AC loss under tension and bending of Bi-2223 tapes processed by "Powder-in-Tube" technique at 17K with self-field. And we have studied the frequency dependence of self-field AC loss in multi-filamentary Bi-2223/Ag tape at 77K. The measurement results and discussions on the relationship between Ic degradation and AC loss are presented.

  • PDF

Studies on the Fine Sintered Mullite(II) (파인 물라이트 소결체에 대한 연구(II))

  • 김경용;김윤호;강선모;김병호;김석수
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.631-636
    • /
    • 1989
  • Submicron high-purity mullite powder was prepared by a colloidal sol-gel route. Boehmite and silica were the starting materials. 2wt% $\alpha$-Al2O3 or ZrO2 was used as a seeding material. The gelled powder was calcined at 130$0^{\circ}C$ for 100min and attrition milled for 3hrs. The mullite powder obtained was composed of submicrometer and uniform particles with a narrow size distribution. It was hot-pressed at 1$600^{\circ}C$ for 1hr under 10MPa or was sintered at 1$650^{\circ}C$ for 4hrs. The bulk densities of the products made by both processes were 3.14 and 3.12g/㎤. the mechanical, thermal and electrical properties of the sintered mullite were characterized by bending strength, thermal expansion coefficient, thermal conductivity, dielectric constant and dielectric loss, etc.

  • PDF

An Experimental Study on the Practical Application of High Strength Concrete using Garnet Powder with industrial by-products (산업부산물인 가네트 미분말을 이용한 고강도 콘크리트의 실용화에 관한 실험 연구)

  • 윤명덕;김상헌;임병호;김태곤;박정민;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.439-444
    • /
    • 2000
  • The purpose of this study is to investigate the possibility of Garnet powder as admixture of high strength concrete. The experiment condition is unit water content 160kg/㎥, W/B=30, 35%, S/A=40, 42, 44% and the cement was replaced with Garnet powder to 0, 10% of cement weight on making specimens. The mechanical properties of the fresh and hardened concrete were given as follows. As the time elapsed, the slump loss of 10% replaced concrete was considerably lower than that of 0% replaced concrete. In compressive strength, the 10% replacement case was nearly the same or somewhat high.

  • PDF

A Study on the Influence of Sulphur-compound to Vitamin C in the different Vegetable during Cooking (유황화합물질이 조리시 야채류중의 Vitamin C 함량에 미치는 영향에 대하여)

  • 임양순
    • Journal of the Korean Home Economics Association
    • /
    • v.12 no.1
    • /
    • pp.472-479
    • /
    • 1974
  • In order to study the influence of sulphur-compound on the vitamin C contents of different vegetables-i.e. Korean green pepper, leaf, Bilum, leaf, Soybean sprouts, Mung bean sprouts, Cucumber-the garlic powder and minced garlic were used while the vegetables were cooked. The results garlic juice during scaling the vegetables the vitamin C contents of them were higher as much as 9.2~12.7% 2. When the scaled vegetables were seasoned the vitamin C contents were higher as much as 8.9~`17.5% by adding garlic powder and 7.3~14.9% by adding minced garlic. 3. Vitamin C loss of the cooked vegetables with room condition for 30 min, was higher as much as 15.2~34.5% compared to just cooking. 4. Vitamin C contents of vegetables after 30 min from cooking, compared to just cooking were higher of vegetables after 30 min from cooking, compared to just cooking were higher as much as shown below. 1) ~13.3% by adding garlic powder. 2) 4.0~9.3% by adding minced garlic.

  • PDF

Environmental Influences on Gas pressure Sintering of $Si_3N_4$ (질화규소의 가스압 소결에 미치는 환경 영향)

  • 김인섭;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.309-315
    • /
    • 1993
  • Gas pressure sintering is a promising process in various densification methods of high strength Si3N4 ceramics. Environmental influences on gas pressure sintering of Si3N4 was investigated with the variationof packing powder, specimen container and N2 gas pressure. The specimens had higher density, larger weight loss and inhomogeneous color in graphite specimen container than in SN26 crucible. The variations of sintering densities in various packing powders (Si3N4, SN26, AlN, BN) were very small but SiC powder was synthesised in graphite crucible with Si3N4 packing powder, aluminium oxynitride compounds were synthesised in SN26 crucible with AlN packing power. Also N2 gas pressure over 20kg/$\textrm{cm}^2$ reduced the densification of Si3N4 in one step-gas pressure sintering. As the result of two step-gas pressure sintering at 700kg/$\textrm{cm}^2$ for 15min., relative density of 99.9% and 3-point bending strength of 1090MPa and dense microstructure of 3~4${\mu}{\textrm}{m}$ grain size were obtained.

  • PDF