• Title/Summary/Keyword: Powder loss

Search Result 728, Processing Time 0.025 seconds

Effects of Crystal Grain Size and Particle Size on Core Loss For Fe-Si Compressed Cores

  • Takemoto, Satoshi;Saito, Takanobu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1183-1184
    • /
    • 2006
  • Core loss of soft magnetic powder cores have been focused on to achieve high efficiency of power supplies. In this study the effects of crystal grain size on core loss were investigated by changing heat treatment conditions. It was found that core loss is influenced by crystal grain size because eddy current loss decreased and hysteresis loss increased by making crystal grain size smaller, and it is also influenced by particle size.

  • PDF

Improvement in the Super Low Core-loss Soft Magnetic Materials

  • Maeda, Toru;Sato, Atsushi;Mochida, Yasushi;Toyoda, Haruhisa;Mimura, Koji;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1284-1285
    • /
    • 2006
  • We reported a P/M soft magnetic material with core loss value of $W_{10/1k}=68W/kg$, which is lower than that of 0.35mm-thick laminated material, by using high purity gas-atomized iron powder. Lack of mechanical strength and high cost of powder production are significant issues for industrial use. In order to achieve both low core loss and high strength by using inexpencive powder, the improvement of powder shape and surface morphology and binder strength was conducted. As the result, the material based on water-atomized powder with 80 MPa of TRS and 108 W/kg of core loss (W10/1k) was achieved.

  • PDF

Fabrication and Magnetic Properties of A New Fe-based Amorphous Compound Powder Cores

  • Xiangyue, Wang;Feng, Guo;Caowei, Lu;Zhichao, Lu;Deren, Li;Shaoxiong, Zhou
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.318-321
    • /
    • 2011
  • A new Fe-based amorphous compound powder was prepared from Fe-Si-B amorphous powder by crushing amorphous ribbons as the first magnetic component and Fe-Cr-Mo metallic glassy powder by water atomization as the second magnetic component. Subsequently by adding organic and inorganic binders to the compound powder and cold pressing, the new Fe-based amorphous compound powder cores were fabricated. This new Fe-based amorphous compound powder cores combine the superior DC-Bias properties and the excellent core loss. The core loss of 500 kW/$m^3$ at $B_m$ = 0.1T and f = 100 kHz was obtained When the mass ratio of FeSiB/FeCrMo equals 3:2, and meanwhile the DC-bias properties of the new Fe-based amorphous compound powder cores just decreased by 10% compared with that of the FeSiB powder cores. In addition, with the increasing of the content of the FeCrMo metallic glassy powder, the core loss tends to decrease.

Ultra Fine Soft Magnetic Powders Produced by High Pressure Water Atomization Process

  • Watanabe, Atsushi;Otsuka, Isamu;Wada, Kimio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.794-795
    • /
    • 2006
  • Metal powder for dust core application was developed. The powder can be produced improved high-pressure water atomization process. The process has produced powder of spherical shape and lower coercivity. The dust core obta ined shows lower core loss.

  • PDF

Development of Powdered Soft Magnetic Material Suitable for Electric Devices Operating at High Frequencies

  • Ishimine, Tomoyuki;Maeda, Toru;Toyoda, Haruhisa;Mimura, Kouji;Nishioka, Takao;Sugimoto, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.802-803
    • /
    • 2006
  • Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.

  • PDF

Quality Characteristics of White pan bread with Led Ginseng powder (홍삼 분말을 첨가한 식빵의 품질특성)

  • Song, Seung-Heon;Shin, Gil-Man
    • Journal of the Korean Society of Food Culture
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • This study investigated properties of bread utilizing extracts of ginseng powder. Ginseng powder bread was baked. Addition of 1~3% of ginseng powder extract to wheat flour was carried out. Rheological properties, dough pH, dough volume, bread volume, water absorption capacity, baking loss, bread color, bread texture, and sensory evaluation were tested to examine properties of bread baked with extracts of ginseng powder. The results are as follows. The dough pH decreased gradually with increasing ginseng powder extract concentration. The bread volume, baking loss, and bread weight increased with increasing use of ginseng powder extract, and springiness and cohesiveness increased as red ginseng powder additive concentration increased. Lightness of the L decreased while a and b increased. In the sensory evaluation, ginseng powder with 1% ginseng powder extract was evaluated as the best for taste, texture, flavor, and overall acceptability.

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Magnetic Properties and Workability of Fe-Si Alloy Powder Cores

  • Lee, Tae-Kyung;Kim, Gu-Hyun;Choi, Gwang-Bo;Jeong, In-Bum
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.170-172
    • /
    • 2008
  • Fe-6.5% Si alloys have good magnetic properties due to their high electrical resistivity, very low magneto-striction, and low crystalline anisotropy. Despite their strong potential, these alloys have seldom been used in magnetic applications because of the very poor ductility of Si-steel above 3.0 wt% Si [1-4]. It is difficult to achieve compressed Fe-6.5% Si powder cores with excellent properties because of the low density due to poor ductility. In compressed powder cores, high density is essential in order to obtain high magnetization and permeability. In this study, an attempt was made to produce Fe-3%Si powder cores because the Fe-3.0 wt% Si alloys have relatively good magnetic properties and room temperature ductility. Gas atomized Fe-3.0 wt% Si powder was compressed into toroid shape cores. By reducing the Si content to 3.0 wt%, the hysteresis loss could be greatly reduced and thus the total core loss could be minimized. The total core loss is 600 mW/$cm^3$ at 0.1 T and 50 kHz.

Improved Magnetic Properties of Silicon-Iron Alloy Powder Core

  • Lee, Tae-Kyung;Kim, Gu-Hyun;Choi, Gwang-Bo;Jeong, In-Bum;Kim, Kwang-Youn;Jang, Pyung-Woo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1191-1192
    • /
    • 2006
  • Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy are not totally because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss. From our experiments, we were able to achive a core loss of $390mW/cm^3$ at 0.1 T and 50 kHz through proper processes and a permeability $\mu_{eff}$ of 68 at low frequency.

  • PDF

Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions (분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF