• Title/Summary/Keyword: Powder forming

검색결과 327건 처리시간 0.027초

부추의 증숙처리가 착즙액 분무건조 분말의 품질에 미치는 영향 (Effects of steam blanching pretreatment on quality of spray-dried powders prepared from pressed juice of garlic chives)

  • 정헌식;김한수;김동섭;이영근;성종환
    • 한국식품저장유통학회지
    • /
    • 제22권3호
    • /
    • pp.385-391
    • /
    • 2015
  • 부추를 활용한 가용성 분말 제조에 적합한 공정 개발의 일환으로, 부추원료의 증숙처리 유무와 착즙액의 분무건조 부형제 종류에 따른 분말제품의 품질특성을 조사하였다. 생부추를 세척, 탈수, 절단 후 증숙처리($100^{\circ}C$, 3분)하거나 무처리한 다음 착즙하여 액을 얻고 여기에 부형제로 dextrin(DE=10)이나 ${\beta}$-cyclodextrin를 5% 첨가하고 분무건조하여 분말을 각각 제조하였다. 부추의 증숙처리는 착즙액 분무건조 분말의 $L^*$값은 높게 하였지만 $-a^*$값, $b^*$값, $C^*$값, $h^o$값은 낮게 하는 효과를 보였다. 분말의 수분함량과 수용성지수는 증숙처리와 부형제의 영향을 받지 않았지만, 입자크기는 증숙처리와 dextrin 첨가구에서 가장 적은 것으로 나타났다. 분말의 클로로필, 총페놀, 비타민 C 함량은 증숙처리구보다 무처리구에서 유의적으로 높은 수준을 보였으나 부형제 종류별로는 유의적인 차이를 보이지 않았다. DPPH 유리기 소거능은 증숙처리에 의해 낮아지며 무처리구에서는 ${\beta}$-cyclodextrin 첨가구가 다소 높은 경향을 보였다. 증숙처리구의 관능적 색, 냄새, 종합 기호도는 무증숙처리구보다 유의적으로 높게 평가되었으며 부형제의 영향은 크게 보이지 않았다. 이로써 부추 착즙액의 분무건조 분말의 품질은 착즙 전 증숙처리의 영향을 크게 받는 것으로 확인되었고, 부추 고유의 이화학적 품질 특성유지에는 무처리가, 관능적 기호도를 고려할 경우에는 증숙처리가 유효한 방법으로 판단되었다.

The Development of Aluminum Alloy Piston for Two-Stroke Cycle Engine by Powder Forging

  • Park, Chul-Woo
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.173-177
    • /
    • 2013
  • The purpose of this paper is to investigate the influences on mechanical properties of two-stroke cycle motor pistons manufactured by casting, conventional forging and powder forging, through the comparison of characteristics, merits and disadvantages of each forming technology. For each forming technology, the optimal process parameters were determined through the experiments for several conditions, and microstructure, hardness, tensile strength and elongation of pistons are compared and analyzed. In conventional forging process, material temperature was $460^{\circ}C$ and the die temperature was $210^{\circ}C$ for the Al 4032. The optimal condition was found as solution treatment under $520^{\circ}C$ for 5 hours, quenching with $23^{\circ}C$ water, and aging under $190^{\circ}C$ for 5 hours. In powder forging process, the proper composition of material was determined and optimal sintering conditions were examined. From the experiment, 1.5% of Si contents on the total weight, $580^{\circ}C$ of sintering temperature, and 25 minutes of sintering time were determined as the optimal process condition. For the optimal condition, the pistons had 76.4~78.3 [HRB] of hardness, and 500 [MPa] of tensile strength after T6 heat treatment.

Synthesis of Lanthanides Doped $CaTiO_3$ Powder by the Combustion Process

  • Jung, Choong-Hwan;Park, Ji-Yeon;Lee, Min-Yong;Oh, Seok-Jin;Kim, Hwan-Young;Hong, Gye-Won
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2000
  • Lanthanides such as La, Gd and Ce have recognized as elements of high level radioactive wastes immobilized by forming solid solution with $CaTiO_3$. For easy forming solid solution between $CaTiO_3$and lanthanides, the combustion synthesis process was applied and the powder characteristics and sinterability were investigated. The proper selection of the type and the composition of fuels are important to get the crystalline solid solution of $CaTiO_3$and lanthanides. When glycine or the mixtures of urea and citric acid with stoichiometric composition was used as a fuel, the solid solution of $CaTiO_3$with $La_2O_3$or $Gd_2O_3$or $CeO_2$was produced very well by the combustion process. The combustion synthesized powder seemed to have a good sinterability with the linear shrinkage of more than 25% up to $1500^{\circ}C$, while that of the solid state reacted powder was less than 10% at the same condition.

  • PDF

유한요소해석을 이용한 오일리스 베어링의 분말 압축 성형에 관한 시뮬레이션 (Simulation on the powder Compression Forming of Oilless Bearing Using Finite Element Analysis)

  • 박민혁;강한빈;송주한;백인석;이동욱;김덕주;이석순
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.1-7
    • /
    • 2013
  • In this study, simulation on the powder compression forming of oilless bearing is performed and the analysis results are compared with the actual products. This study aims to examine the suitability of powder compression for bearing by using FEA(finite element analysis) before full-scale production. The lubrication state can be predicted by changing the coefficient of friction in order to get the optimal density gradient. Analysis for single and double action presses are performed and these results are compared with each other. State and process of optimal lubrication are proposed from the study result.

기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구 (Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying)

  • 김민수;이한성;안병민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

지르코니아 분말의 치밀화와 소결거동 : I. 가압에 따른 치밀화 응답 (Compaction and Sintering Behaviour of Zirconia Powders: I. Compaction Response)

  • 박홍채
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.489-495
    • /
    • 1992
  • The continuous compaction response of zirconia powders prepared by different processing treatments was investigated. Though the yield point could be or not below 1 MPa, the change of slope was always observed at high pressure range around 60 MPa. Powder compaction was mainly governed by second compaction stage and compaction rate was decreased with increasing forming pressure. Rotary vacuum dried powder favored a high compaction density, whereas freeze dried and calcined powders favored an increase in the pressing efficiency. In order to extract more reliable information about powder compaction, it was necessary to use not only compaction response diagram but also compaction rate diagram.

  • PDF

알루미나 분말 성형체의 고온 치밀화 성형 공정 해석을 위한 모델 (Model for High Temperature Densification)

  • 권영삼;김기태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.159-166
    • /
    • 1994
  • A constitutive model was proposed to analyze creep densification and grain growth of alumina powder compacts during high temperature processing. Theoretical results from the constitutive model were compared with various experimental data of alumina powder compacts in the literature including pressureless sintering, sinter forging and hot pressing. The proposed constitutive equations were implemented into finite element analysis program (ABAQUS) to simulate densification for more complicated geometry and loading conditions. High temperature forming processing of alumina compact with complicated shape was simulated. Processing of Alumina Powder Compacts

  • PDF

자동차용 피스톤의 성형기술과 기계적 성질의 개선에 관한 연구 (A Study on the Forming Technologies for a Motor Piston and Improvement of Mechanical Properties)

  • 김길준;박종옥;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.842-845
    • /
    • 2000
  • The purpose of this paper is to investigate the influences on mechanical properties of motor pistons manufactured by casting, conventional forging and powder forging, using the comparison of characteristics like microstructure, hardness, tensile strength, and elongation. To form conventional forging piston, the experiment of visioplasticity was performed. As the model material, plasticine was used. To form powder forging piston, the shape of piston was simplified as simple cup shape. Material properties like workability, density variation before and after forging, and strain loci of material during forging were investigated. Powder forging and conventional forging technologies were effective to gain dense microstructure. In powder forging, distribution of such dense microstructuer was uniform. For hardness, pistons from powder forging and conventional forging technologies were much better than that from casting. For tensile strength and elongation, powder forging and conventional forging technologies were also advantageous.

  • PDF

Influence of Water Volume on Particle Characteristics of Iron Powder with Insulated Coating for a Compacted Magnetic Core

  • Funato, Norikazu;Yamamoto, Masayuki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.160-161
    • /
    • 2006
  • Seasonal changes have been recognized in particle characteristics and forming characteristics of iron powder with insulated coating for a compacted magnetic core because of its high hygroscopicity, due to its phosphate coating and resin binder additives. For this reason, particle characteristics and molding characteristics of the powder with diverse water absorbtivity have been studied. The result shows that the higher the volume of absorbed water, the worse the fluidity becomes, resulting in the reduction in both springback during the molding process and expansion reduction after the heat treatment. The requirement on dimension accuracy for the finished product can be satisfied with an additional drying process on the material powder, which contributes to maintain its water volume constant.

  • PDF

산화물환원에 의한 W-15wt%Cu 나노복합분말의 합성과 특성 (Synthesis and Characteristics of W-l5wt%Cu Nanocomposite Powder by Oxide Reduction)

  • 윤의식
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.304-309
    • /
    • 1997
  • The synthesis of W-l5wt%Cu nanocomposite powder by hydrogen reduction of ball milled W-Cu oxide mixture was investigated in terms of powder characteristics such as particle size, mixing homogeneity and micropore structure. It is found that the micropores in the ball milled oxide (2-50 nm in size) act as an effective removal path of water vapor, followed by the formation of dry atmosphere at reaction zone. Such thermodynamic condition enhances the nucleation of W phase but suppresses the growth process, being in favor of the formation of W nanoparticles (about 21 nm in size). In addition, the superior mixing homogeneity of starting oxide mixture turned out to Play a significant role for forming extraordinary chemical homogeneity of W-l5wt%Cu nanocomposite powder.

  • PDF