• 제목/요약/키워드: Powder consolidation

검색결과 164건 처리시간 0.031초

Microstructure and Consolidation of Gas Atomized Al-Si Powder

  • Hong, S.J.;Lee, M.K.;Rhee, C.K.;Chun, B.S.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.994-995
    • /
    • 2006
  • The microstructure of the extruded Al-20Si bars showed a homogeneous distribution of eutectic Si and primary Si particles embedded in the Al matrix. The grain size of ${\alpha}-Al$ varied from 150 to 600 nm and the size of the eutectic Si and primary Si in the extruded bars was about 100 - 200 nm. The room temperature tensile strength of the alloy with a powder size $<26{\mu}m$ was 322 MPa, while for the coarser powder ($45-106{\mu}m$) it was 230 MPa. With decreasing powder size from $45-106{\mu}m$ to $<26{\mu}m$, the specific wear of all the alloys decreased significantly at all sliding speeds due to the higher strength achieved by ultrafine-grained constituent phases. The fracture mechanism of failure in tension testing and wear testing was also studied.

  • PDF

금속분말의 고압비틀림 성형시 나노결정화 (Nanocrystallization of Metallic Powders during High Pressure Torsion Processing)

  • 윤승채;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.105-106
    • /
    • 2007
  • Microstructure and hardness of metallic powder of Cu was studied after high pressure torsion (HPT) with 10 torsions and high pressure of 6 GPa. The size Cu grain decreases drastically after HPT and reaches the nano size range. During HPT, Cu powder increases hardness and Hall-Petch hardening, due to the decreasing grain size. In this study, effect of HPT on the hardness of Cu powders and consolidation with Nanocrystalline of the work reported here. The results indicated that Cu powder has a beneficial effect on homogeneous deformation, reducing grain size.

  • PDF

Consolidation of Quartz Powder by the Geopolymer Technique

  • Ikeda, Ko;Nakamura, Yoshinori
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.120-123
    • /
    • 2000
  • The geopolymer technique may be a future-oriented technology for saving energies and resources. This technique requires 3 fundamental elements so-called filler, hardener and geopolymer liquor being generally an alkaline silicate solution. Quartz powder, water quenched granulated blast furnace slag and sodium silicate solution prepared from $Na_2O\cdot2SiO_2$were chosen for these three elements. After mixing these starting materials in appropriate proportions, monoliths were prepared by casting at room temperature. Strength tests showed the following results for 28d age speciment: 7.9-12.7 MPa in flexural strength and 20.2-32.8 MPa in compressive strength, depending on geopolymer liquor/solid ratio, P/S and fineness of the quartz powders used.

  • PDF

급속응고 Mg 합금분말의 제조 및 동적성형특성 (Fabrication and Dynamic Consolidation Behaviors of Rapidly Solidified Mg Alloy Powders)

  • 채홍준;김영도;김택수
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.340-346
    • /
    • 2011
  • In order to improve the weak mechanical properties of cast Mg alloys, Mg-$Zn_1Y_2$ (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 ${\mu}m$ in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.

세라믹 분말의 변형거동 해석을 위한 미소역학모델 (A micromechanical model for ceramic powders)

  • 하상렬;박태욱;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.668-673
    • /
    • 2008
  • In this paper, we developed a physically-based micromechanical model for inelastic deformation of ceramic powders. The aggregate response of ceramic particles was modeled using the two-surface yield function which considered the shear-induced dilatancy caused by friction, rolling resistance and cohesion between powder particles and consolidation caused by plastic deformation of powder themselves under high compression. The constitutive equations were implemented into the user-subroutine VUMAT of finite element program ABAQUS/Explicit. The material parameters in the constitutive model were identified by calibrating the model to reproduce data from triaxial compression tests and simple compression tests. The density distribution obtained by using the proposed model was in good quantitative agreement with the experimental results of the triaxial compression and cold isostaic compression as well.

  • PDF

동계 벌크 아몰퍼스의 다단 온간 압연시 변형 거동 (Deformation Behavior of $CU_{54}Ni_6Zr_{22}Ti_{18}$ Bulk Amorphous Alloy during Multi-Pass Warm Rolling)

  • 박은수;김휘준;배정찬;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.139-142
    • /
    • 2005
  • Cu-Ni-Zr-Ti bulk amorphous thin strips were produced by multi-pass warm rolling of the amorphous powder at temperatures in the supercooled liquid region. Process variables for rolling of the bulk amorphous strips were properly controlled to prevent onset of crystallization and failure during rolling up to three passes. During rolling of the amorphous powder, both the deformation and densification took place and the newly developed surface on the deformed amorphous particles enhances the consolidation leading to an increase in the strength. The strain state during rolling was analyzed by FEM.

  • PDF

Investigation of Microstructure Inhomogeneity in SiCp-reinforced Aluminum Matrix Composites

  • Gacsi, Zoltan;Gur, C.Hakan;Makszimus, Andrea;Pieczonka, Tadeusz
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1303-1304
    • /
    • 2006
  • The type, volume fraction, size, shape and arrangement of embedded particles influence the mechanical properties of the particle reinforced metal matrix composites. This presents the investigation of the SiC particle and porosity distributions in various aluminum matrix composites produced by cold- and hot-pressing. The microstructures were characterized by optical microscopy and stereological parameters. SiC and porosity volume fractions, and the anisotropy distribution function were measured to establish the influence of the consolidation method.

  • PDF

Formation of $Fe_3AlC$ Base Alloy by Mechanical Alloying and Vacuum Hot Pressing

  • Isonishi, Kazuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1290-1291
    • /
    • 2006
  • Fabrication of $Fe_3AlC$ matrix in-situ composite, reinforced by a FeAl phase, was studied by using the powder metallurgical processing route. Especially, in order to disperse the second phase more finely, we chose the mechanical alloying process. We investigated the microstructural and mechanical properties of the consolidated material. After consolidation by vacuum hot pressing, the compact showed almost full density and consisted of a $Fe_3AlC$ matrix and FeAl second phase (average particle size was less than 1m). The compact showed HV746, which was higher than that of the arc melted $Fe_3AlC$ monolithic material, HV603.

  • PDF

Thermoelectric Properties of Half-Heusler ZrNiSn1-xSbx Synthesized by Mechanical Alloying Process and Vacuum Hot Pressing

  • Ur, Soon-Chul
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.401-405
    • /
    • 2011
  • Half-heusler phase ZrNiSn is one of the potential thermoelectric materials for high temperature application. In an attempt to investigate the effect of Sb doping on thermoelectric properties, half-heusler phase $ZrNiSn_{1-x}Sb_x$ ($0{\leq}x{\leq}0.08$) was synthesized by mechanical alloying of stoichiometric elemental powder compositions, and consolidated by vacuum hot pressing. Phase transformations during mechanical alloying and hot consolidation were investigated using XRD. Sb doped ZrNiSn was successfully produced in all doping ranges by vacuum hot pressing using as-milled powders without subsequent annealing. Thermoelectric properties as functions of temperature and Sb contents were evaluated for the hot pressed specimens. Sb doping up to x=0.04 in $ZrNiSn_{1-x}Sb_x$ was shown to be effective on thermoelectric properties and the figure of merit (ZT) was shown to reach to the maximum at x=0.02 in this study.