• 제목/요약/키워드: Powder Sintering

검색결과 1,803건 처리시간 0.026초

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

기계적 밀링 처리하여 SPS법으로 제작한 티타늄의 미세조직과 강화기구 특성 (Microstructure and Strengthening Mechanism Characteristics of Titanium Fabricated by SPS Method after Mechanical Milling Treatment)

  • 한창석;김준성;심우빈
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.242-250
    • /
    • 2023
  • Titanium, which has excellent strength and toughness characteristics, is increasingly used in the aerospace field. Among the titanium alloys used for body parts, more than 80 % are Ti-6Al-4V alloys with a tensile strength of 931 MPa. The spark plasma sintering (SPS) method is used for solidification molding of powder manufactured by the mechanical milling (MM) method, by sintering at low temperature for a short time. This sintering method avoids coarsening of the fine crystal grains or dispersed particles of the MM powder. To improve the mechanical properties of pure titanium without adding alloying elements, stearic acid was added to pure titanium powder as a process control agent (PCA), and MM treatment was performed. The properties of the MM powder and SPS material produced by solidifying the powder were investigated by hardness measurement, X-ray diffraction, density measurement and structure observation. The processing deformation of the pure titanium powder depends on the amount of stearic acid added and the MM treatment time. TiN was also generated in powder treated by MM 8 h with 0.50 g of added stearic acid, and the hardness of the powder was higher than that of Ti-6Al-4V alloy when treated with MM for 8 h. When the MM-treated powder was solidified in the SPS equipment, TiC was formed by the solid phase reaction. The SPS material prepared as a powder treated with MM 8 h by adding 0.50 g of stearic acid also formed TiN and exhibited the highest hardness of Hv1253.

분말야금법을 이용한 Bi-materials의 제조 (Preparation of Bi-materials by Powder Metallurgy Method)

  • 이인규;이광식;장시영
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

보헤마이트 졸겔법에 의한 알루미나 세라믹스의 저온소결 I. 상전이 및 소결거동 (Low Temperature Sintering of Alumina by Boehmite Sol-Gel Method I. Phase Transformation and Sintering Behavior)

  • 이형민;이홍림
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1187-1197
    • /
    • 1997
  • Dry gel composed of primary particles more homogeneous than starting boehmite powder was prepared by dispersing and gelling the boehmite powder. The transformation temperatures of boehmite powder, dry gel seeded with 0, 1, 3, 5 wt% $\alpha$-Al2O3, and ball milled gel were 1192$^{\circ}C$, 1184$^{\circ}C$, 1141$^{\circ}C$, 1119$^{\circ}C$, 1117$^{\circ}C$, and 1106$^{\circ}C$, respectively. Sintering behavior of dry gel without seed was similar to that of boehmite powder, but the sintered density of dry gel was improved as much as 10%~15% than boehmite powder. In the case of dry gel seeded with 5 wt% $\alpha$-Al2O3, sintering behavior was much improved. The relative density of the gel seeded with 5 wt% $\alpha$-Al2O3 was 96% when sintered at 140$0^{\circ}C$ for 1h. On the other hand, ball milling of the non-seeded sol for 48h resulted in the relative density of 97% when sintered at 130$0^{\circ}C$ for 1h. The size and amount of $\alpha$-Al2O3 particles added by ball milling were 0.107 ${\mu}{\textrm}{m}$ and 0.5 wt%.

  • PDF

기계적 밀링과 플라즈마 활성 소결법에 의한 TiB2 분산 Cu기 복합재료 제조 (Synthesis of TiB2 Dispersed Cu Matrix Composite Material by the Combination of the Mechanical Milling and Plasma Activated Sintering Process)

  • 김경주;이길근;박익민
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.292-297
    • /
    • 2007
  • The present study was focused on the synthesis of a $TiB_2$ dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The $Cu/TiB_2$ mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized $Cu/TiB_2$ mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of $Cu/TiB_2$ composite material sintered at $800^{\circ}C$ showed about 98% of theoretical density. The $Cu-1vol%TiB_2$ composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of $Cu-3vol%TiB_2$ composite material were about 140 Hv and about 45% IACS, respectively.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

방전플라즈마 소결법으로 제작된 순 마그네슘 분말 소결체의 특성평가 (Characteristics of Pure Mg Powder Compacts Prepared by Spark Plasma Sintering Process)

  • 홍지민;손현택;장세훈;이재설;차용훈;오익현
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.331-336
    • /
    • 2007
  • The pure Mg powder compacts were successfully fabricated using SPS process. The machined chip powder showed flake shaped morphology with coarse surfaces, while gas atomized powders were spherical in morphology with smooth surfaces. In this study, SPS process was used to consolidate the pure Mg powder because this process allows high density consolidation in a short time. The results showed that increased sintering temperature from $350^{\circ}C$ to $500^{\circ}C$ with pressure of 30MPa, the maximum values of the density was increased from 98.1% to 99.8% of theoretical density, respectively. However, density of the sintered chip powders was higher than that of gas-atomized powder due to larger contact areas between particles.

Spark Plasma Sintering Behaviors of M-type Barium Hexaferrite Nano Powders

  • Jung, Im Doo;Kim, Youngmoo;Hong, Yang-Ki;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.256-259
    • /
    • 2014
  • A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sintering process. Three different holding temperatures, $850^{\circ}C$, $875^{\circ}C$ and $900^{\circ}C$ were applied to the spark plasma sintering process with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was measured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be proportional to the holding temperature. The full relative density was obtained at $900^{\circ}C$ and the total sintering time was only 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperature also led to the higher saturation magnetic moment (${\sigma}_s$) and the higher coercivity ($H_c$) in the vibrating sample magnetometer measurement. The saturation magnetic moment (${\sigma}_s$) and the coercivity ($H_c$) obtained at $900^{\circ}C$ were 56.3 emu/g and 541.5 Oe for each.

일축 가압 소결법을 이용한 고밀도 탄화 붕소 제조 및 기계적 특성 (Mechanical Properties of B4C Ceramics Fabricated by a Hot-press Sintering)

  • 채재홍;박주석;안종필;김경훈
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.81-85
    • /
    • 2009
  • $B_4C$ ceramics were fabricated by a hot-press sintering method and their sintering behavior, microstructure and mechanical properties were evaluated. Relative density of $B_4C$ ceramics were obtained by a hot-press sintering method reached as high as 99% without any sintering additives. The mechanical properties of $B_4C$ ceramics was improved by a methanol washing process which can remove $B_2O_3$ phase from a $B_4C$ powder surface. This improvement results from the formation of homogeneous microstructure because the grain coarsening was suppressed by the elimination of $B_2O_3$ phase. Particularly, mechanical properties of the sintered specimen using a methanol washed powder improved compared with the specimen using an as-received commercial powder.