• 제목/요약/키워드: Powder Material

검색결과 2,777건 처리시간 0.032초

석분슬러지를 이용한 압출성형 콘크리트 패널의 휨강도 특성 (A Flexural Strength Properties of Extruding Concrete Panel Using Stone Powder Sludge)

  • 최훈국;정은혜;곽은구;강철;서정필;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.115-118
    • /
    • 2006
  • Nowadays the using of concrete is generalized, and construction material is demanded to be lightweight according to increasing the height and capacity of buildings. Therefore, it needs to develop the products having the great quality and various performance. Extruding concrete panel made of cement, silica source, and fiber, and it is a good lightweight concrete material in durability and thermostable. The silica of important ingredient is natural material with hish SiO2 contents and difficult in supply because of conservation of environment. On the other hand, the stone powder sludge discharged about 20-30% at making process of crushed fine aggregate and it is wasted. The stone powder sludge is valuable instead of silica ole because the stone powder sludge includes water of about 20-60%, SiO2 of about 64% and it has fine particles. This experiment is on the properties of extruding concrete panel using the stone powder sludge use instead of silica. From this experiment, we find that it is possible to replace the silica as stone power sludge up to 50%,

  • PDF

MR-EMR 복합제조공정에서 환원제 위치가 탄탈륨 분말 특성에 미치는 영향 (Characteristics of Tantalum Powder on the Location of Reductant by MR and EMR Combination Process)

  • 박형호;윤재식;배인성;김양수;윤동주;원대희;김병일
    • 한국분말재료학회지
    • /
    • 제14권3호
    • /
    • pp.190-196
    • /
    • 2007
  • A process known as the MR and EMR combination process is able to overcome the shortcomings of the MR (metallothermic reduction) and EMR (electronically mediated reaction) process. The effects of $K_2TaF_7$ as the raw material, sodium as the reducing agent and KCl/KF as the diluent on the characteristics of tantalum powder are investigated. In this study, a MR-EMR combination process has been employed to tantalum powder on the location of reductant. The excess of reductant were varied from 25, 50 to 75 wt%. The total charge and external circuit decreases as the amount of reductant increases. The average particle size increases with increasing the amount of reductant.

유한요소법을 이용한 분말야금 공정 해석 및 설계 (Analysis and Design of Powder Metallurgy Process using Finite Element Method)

  • 권영삼;이민철;정성택;정석환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.241-244
    • /
    • 2005
  • Though the history of finite element analysis in field of powder metallurgy is not short, industrial engineer is still being dependent on the trial and error approach based on engineer's experience in selecting process conditions. This problem is mainly due to the difficulty in establishing models for the behavior of a powder compact during compaction and sintering as well as finding material parameters for the models and the absence of CAE software with which industrial engineer can easily investigate the effect of process conditions on the quality of product. Therefore, we established very simple and cheap procedure to find material parameters for powder compaction behavior and implemented it in self-developed commercial CAE software for powder metallurgy, PMsolver. Basically, the development strategy of PMsolver lies on simplification and convenience so as for industrial engineers to use it with least training. Using PMsolver, optimal process conditions were found for some geometry and powders. Prior to process condition design, the accuracy of finite element analysis was verified.

  • PDF

Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성 (Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process)

  • 이지혜;김지원;이기안
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.

고순도 초미립자 물라이트 분말 합성에 대한 연구 (I) (Studies on the Synthesis of High Purity and Fine Mullite Powder (I))

  • 김경용;김윤호;김병호;이동주
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.682-690
    • /
    • 1989
  • Fine mullite powder was prepared by colloidal sol-gel route. Boehmite as a starting material of Al2O3 and silica sol or fumed silica as a starting material of SiO2 were used. $\alpha$-Al2O3, TiO2 and ZrO2 were used as seeding materials. The combination of boehmite and silica was found to be the stoichiometric mullite powder. Techniques for drying used were spray drying, freeze drying, reduced pressure evaporation and drying in a oven. The gelled powder was heated at 130$0^{\circ}C$ for 100min and was attrition-milled for 1~3hrs. The mullite powder obtained was composed of submicrometer, uniform and spherical particles with a narrow size distribution. The mullite powder was characterized by BET, SEM, XRD and IR spectroscopy.

  • PDF

반자장계수를 고려한 자성분말의 초투자율 측정에 관한 연구 (A Study on measuring the Initial Permeability of Magnetic Powder considered Demagnetizing factors)

  • 전홍배;허진;김철한;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.86-90
    • /
    • 2000
  • In this study, A equipment for measuring the initial permeability of soft-ferrite powder was developed by using a differential transformer coil, and was investigated demagnetizing factors. To measure the initial permeability of magnetic ceramic powder is cumbersome since there are not any measuring equipment and method. Magnetic powder is currently used for a magnetic fluid and microwave absorber materials, and the initial permeability of the magnetic powder is very important to be evaluated a powder for some applications.

  • PDF

Development of Powdered Soft Magnetic Material Suitable for Electric Devices Operating at High Frequencies

  • Ishimine, Tomoyuki;Maeda, Toru;Toyoda, Haruhisa;Mimura, Kouji;Nishioka, Takao;Sugimoto, Satoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.802-803
    • /
    • 2006
  • Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.

  • PDF

Micro Fabrication Process of Powder Compact with Semi-solid Mold

  • Tsumori, Fujio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.258-259
    • /
    • 2006
  • New powder compaction process, in which a Bingham semi-solid/fluid mold is utilized, is developed to fabricate micro parts. In the present process, a powder material is filled as slurry in a solid wax mold, dried and compressed. The wax is heated during compaction and becomes semi-solid state, which can acts as a pressurized medium for isostatic compaction. Since the compacted micro parts are very fragile, the mold's temperature is controlled to higher than its melting point during unloading, to avoid breakage of the compacts. To demonstrate effectiveness of this process, some micro compacts of alumina are shown as examples.

  • PDF

Micro-porous Nickel Produced by Powder Metallurgy

  • Yamada, Y.;Li, Y.C.;Banno, T.;Xie, Z.K.;Wen, C.E.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.602-603
    • /
    • 2006
  • Micro-porous nickel (Ni) with an open cell structure was fabricated by powder metallurgy. The pore size of the micro-porous Ni approximated $30{\mu}m$ and $150{\mu}m$. For comparison, porous Ni with a macro-porous structure were also prepared by both powder metallurgy (pore size $800{\mu}m$) and the traditional chemical vapour deposition method (pore size $1300{\mu}m$). The mechanical properties of the micro-and macro-porous Ni samples were evaluated using compressive tests. Results indicate that the micro-porous Ni samples exhibited significantly enhanced mechanical properties, compared to those of the macro-porous Ni samples.

  • PDF

Wear Resistance Properties of Tungsten Carbide/Stainless Steel Composite Materials Prepared by Pulsed Current Sintering

  • Kawakami, Yuji;Tamai, Fujio;Enjoji, Takashi;Takashima, Kazuki;Otsu, Masaaki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.89-90
    • /
    • 2006
  • Austenitic stainless steel has been used as a corrosion resistance material. However, austenitic stainless steel has poor wear resistance property due to its low hardness. In this investigation, we apply powder composite process to obtain hard layer of Stainless steel. The composite material was fabricated from planetary ball milled SUS316L stainless steel powder and WC powder and then sintered by Pulsed Current Sintering (PCS) method. We also added TiC powder as a hard particle in WC layer. Evaluations of wear properties were performed by pin-on-disk wear testing machine, and a remarkable improvement in wear resistance property was obtained.

  • PDF