• Title/Summary/Keyword: Powder Forging

Search Result 80, Processing Time 0.025 seconds

Development of automotive parts by powder forging process (분말단조에 의한 자동차 부품의 개발)

  • 정형식;이정환;이동원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.22-29
    • /
    • 1991
  • 분말단조란 종래의 분말야금법으로 예비 성형체를 만든후 그것을 단조 소재로 열간단조를 통하여 최종 제품을 만드는 부품가공기술이다. 본 고에서는 분말단조의 이해와 선진국에서 개발에 성공한 사례 및 경제성을 조사함으로써 분말단조기술의 현황 파악 및 기술 축적을 도모하고자 하였다.

  • PDF

P/M Aluminium Automobile Parts in Sumitomo Electric Ind. Ltd.

  • Akechi, Kiyoaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.5-5
    • /
    • 1997
  • Rapidly-solidified P/M aluminium alloys for automobile and home appliance industries were developed. Rapidly-solidification made it possible to refine microstructures and to expand the range of alloy composition. For example, Al-Si alloys containing transition metal have lower thermal expansion coefficient, more excellent wear resistance, higher strength, and better machinability than those of conventional aluminium alloys. Therefore, in Japan, the technologies on powder-extrusion and powder-forging of aluminium alloy powders are developed for fifteen years, and applied to several parts, such as cylinder liners of motor cycle engines, rotors and vanes of compressors for car air conditioner, oil pump rotor for racing car, and so on. In this presentation, applications for automobile are mentioned. In particular, cylinder liners made of particle-dispersed composites with fine alumina and graphite are in detail described.

  • PDF

Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process (HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.

A Study on Optimum Reheating Process of Automotive Aluminum Piston using Neural Network and the Taguchi Method in Semi-Solid forming (반용융 성헝에서의 다구찌 방법과 신경망을 이용한 자동차 알루미늄 피스톤의 최적 재가열 과정에 대한 연구)

  • 윤재민;김영호;박준홍;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.902-905
    • /
    • 2000
  • As the manufacturing processes of automotive engine piston, gravity die-casting, squeeze casting, hot forging and powder forging process are generally used for the various specifications. As the semi-solid forming(SSF) is compared with conventional casting such as gravity die-casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. In SSF process, the materials are heated up to the temperature between the solvus and liquidus line at which the materials exists in the form of liquid-solid mixture. In this time, Discussion is given about reheating process of row material and results are presented regarding accurate temperature and process variables controlling for right solid fractions.

  • PDF

Finite Element Analysis of P/M Connecting Rod Forging (분말컨넥팅로드 단조의 유한 요소 해석)

  • Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1992
  • Sintered P/M connecting rod is forged to increase density and to satisfy dimensional specifications. Flow of the materials is different form that of wrought materials due to pores in the preform. The Mises yield function was modified to. include the first invariant of stress tensor, and the associated flow rule was derived by applying the normality rule to the yield function. Axisymmetric and plane-strain finite element analyes were carried out for the ring and beam portions of the connecting rod, respectively. The flow of the preform and density change of the analysis are presented in this paper. A load-stroke curve was also presented by superimposing analysis results for the ring and beam portions.

  • PDF

Finite Element Analysis of Powdered Magnet Sinter-Forging Processes Considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 소결단조 성형공정의 유한요소 해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.478-484
    • /
    • 2001
  • Tube Process (TP) is a process to produce permanent magnets using a deformable tube for densification of magnet powder. This process claims that it can accomplish both densification and anisotropication in one step forming. This process is distinguished from other processes since it uses a deformable copper tube for densification of magnet powder. In this paper, simulation has been carried out for tile Tube Process in a closed die considering the compressibility of powdered material, arbitrary curved shape and deformable body contact between Nd-Fe-B magnet powder and a copper tube. Results show that the finite element analysis of the Tube Process plays an important role in the stage of preform design.

  • PDF

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Fabrication of Al Flake Powder for Pigment (안료용 알루미늄 플레이크 분말 제조)

  • 홍성현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2003
  • The study for producing the flake powders by milling of aluminum foil and gas atomized powders was carried out. The effects of lifter bars on the ball motions and milling of aluminum foils were also investigated. The aluminum foils were laminated each other, elongated, fragmented into small foils and finally formed into the flake powders during the dry ball-milling. The spherical atomized-powders were milled to coarse flake powders with high aspect ratio and then changed to fine flake powders with lower aspect ratio. Even though long times were required for making flake powders by milling of foils, the water covering areas of them were higher than those of powders milled using gas-atomized powders, suggesting aluminum foils were more plastically deformed by micro-forging. On the other hand, as the number of lifter bars increased, the necessary rotation speeds of milling jar for cascading mode and cataracting mode decreased drastically. It was possible to achieve same quality of milled flake powder by using the lifter bars under the lower milling speeds. The painting test showed that the appearance of painted surface was good and optimum content range of aluminum paste in car paint to maximize the degree of gloss was 3-5%.

Finite Element Analysis of Powdered Magnet Sinter-forging Processes considering Deformable Body Contact (변형체 접촉을 고려한 분말자석 단조성형공정의 유한요소해석)

  • 이형욱
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.82-85
    • /
    • 1999
  • Permanent magnets of Nd-Fe-B group have kept a key post in the permanent magnet market and used in various parts. Tube Process is a process to produce permanent magnets using a deformable tube for denslfication of powder magnets. Advantage claimed for this process is that it can accomplish both densification and anisotropication in one step forming. In this paper. the simulation has been carried out for a full Tube Process in a closed Qe considering the compressibility of material, arbitrary curved shape and deformable body contact between Nd-Fe-B powder magnet and copper tube. The results show that the analysis of Tube Process is applicable with great help in the stage of preform design.

  • PDF

Study on the Mechanical Properties of Power Metallurgy Spline Hub for Clutch Disc (클러치 디스크용 분말야금 스플라인 허브의 기계적성질에 관한 연구)

  • 최문일;장진호;강성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.104-110
    • /
    • 1998
  • In automotive industries, various processes for the cost reduction have been investigated lively. As one of them, powder metallurgy becomes influential. Compared to other methods used for he manufacture of steel components the Powder metallurgy process is competitive primarily due to the small number of production steps to reach the final geometry and thereby also the energy-efficiency. In this paper, to alter present forging process into powder metallurgy process by which the automotive clutch disc spline hub is manufactured machining process, the mechanical properties of sintered materials is investigated by specimen test. Selecting the 3 kinds of materials-SMF 4040, SMF 9060 and DHP-1, their properties according to heat treatment such as carburizing -tempering and plasma-nitrodizing are compared. By result of specimen test - tensile test, compression ring test, Impacting test, measurment of hardness, and microstructure analysis - we concluded that SMF 9060 and carburizing-tempering heat treatment is an optimal material and heat treatment method for the spline hub. It will be able to reduce manufacturing cost and weight.

  • PDF