• Title/Summary/Keyword: Potentiodynamic polarization test

Search Result 130, Processing Time 0.025 seconds

Investigation on Electrolytic Corrosion Characteristics with the Variation of Current Density of 5083-H321 Aluminum Alloy in Seawater (5083-H321 알루미늄 합금의 해수 내 전류밀도의 변화에 따른 전식 특성 연구)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Electrolytic corrosion of the ship's hull can be occurred due to stray current during welding work using shore power and electrical leakage using shore power supply. The electrolytic corrosion characteristics were investigated for Al5083-H321 through potentiodynamic polarization and galvanostatic corrosion test in natural seawater. Experiments of electrolytic corrosion were tested at various current densities ranging from $0.01mA/cm^2$ to $10mA/cm^2$ for 30 minutes, and at various applied time ranging from 60 to 240 minutes. Evaluation of electrolytic corrosion was carried out by Tafel extrapolation, weight loss, surface analysis after the experiment. In the electrolytic corrosion characteristics of Al5083-H321 as the current density increased, the surface damage tended to proportionally increase. In the current density of $0.01mA/cm^2$ for a applied long time, the damage tended to grow on the surface. In the case of $10mA/cm^2$ current density for a applied long time, the damage progressed to the depth direction of the surface, and the amount of weight loss per hour increased to 4 mg/hr.

Effects of Inhibitors on Corrosion Resistance of Steel in CaCl2 Solution Based on Response Surface Analysis

  • Park, Tae-Jun;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.129-142
    • /
    • 2021
  • Effects of corrosion inhibitors (i.e., sodium nitrite, sodium hexametaphosphate, trimethylamine (TEA), sugar, and urea) on the corrosion resistance of carbon steel in CaCl2 solution were investigated. The test solution was designed with response surface methodology of design of experiments (DOE) in the range of 0 ~ 50 ppm for NaNO2, 0 ~ 200 ppm for (NaPO3)6, 0 ~ 2000 ppm for TEA, 0 ~ 3000 ppm for sugar, 0 ~ 200 ppm for urea with 3 wt% CaCl2. The corrosion potential and the corrosion rate were measured with potentiodynamic polarization tests and analyzed statistically to find main effects of inhibitor concentrations and interactions between them. As a result, hexametaphosphate was the most effective compound in reducing the corrosion rate. Sugar also reduced the corrosion rate significantly possibly because it covered the surface effectively with a high molecular weight. The inhibiting action of sugar was found to be enhanced by adding trimethylamine into the solution. Nevertheless, trimethylamine did not appear to be effective in inhibiting corrosion by itself. However, urea and sodium nitrite showed almost no inhibition on corrosion resistance of steel.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell (MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Surface Hardness and Corrosion Behavior of AISI 420 Martensitic Stainless Steels Treated by Plasma Oxy-Nitriding Processing (플라즈마 산질화처리된 AISI 420 마르텐사이트 스테인레스 강재의 표면 경도 및 부식 거동)

  • Jinhan Kim;Kwangmin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.309-314
    • /
    • 2023
  • This study aimed to address the limitations of traditional plasma nitriding methods by implementing a short-term plasma oxy-nitriding treatment on the surface of AISI 420 martensitic stainless steel. This treatment involved the sequential formation of nitride and oxide layers, to enhance surface hardness and corrosion resistance, respectively. The process resulted in the formation of a 20 ㎛-thick nitride layer and a 3 ㎛-thick oxide layer on the steel surface. Initially, the hardness increased by 2.2 times after nitriding, followed by a subsequent decrease of approximately 31 % after oxidation. While the nitriding process reduced corrosion resistance, the subsequent oxidation process led to the formation of a passive oxide film, effectively resolving this issue. The pitting corrosion of the oxide passive film started at 82.6 mVssc, providing better corrosion resistance characteristics than the nitride layer. Consequently, the trade-off between surface hardness and corrosion resistance in plasma oxy-nitrided AISI 420 martensitic stainless steel is anticipated to be recognized as an innovative and comprehensive surface treatment process for biomedical components.

Effects of Nb Addition on Corrosion Resistance and Cytotoxicity Behavior of Ti Alloys (Nb이 첨가된 Ti합금의 내식성 및 생체안정성)

  • Lee, Doh-Jae;Lee, Kwang-Min;Lee, Kyung-Ku;Ryu, Chang-Nam;Oh, Tae-Wook;Kim, Soo-Hag;Yoon, Tack-Lim
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.761-768
    • /
    • 2003
  • The corrosion resistance and cytotoxicity behavior of Ti alloys were studied as a function of Nb contents(3wt.%Nb, 20wt.%Nb, 40wt.%Nb). Ti-Nb alloys were melted by vacuum arc furnace and then rolled to 50% reduction ratio after homogenized at 105$0^{\circ}C$ for 24hrs. The corrosion resistance of Ti-Nb alloys were investigated by potentiodynamic polarization test in the 0.9% NaCl and 5% HCI solution. Biocompatibility of Ti-Nb alloys was evaluated by cytotoxicity test. The results can be summarized as follows 1) The microstructure change from equiaxial to acicular and the increased $\beta$ phase in Ti-Nb alloys were obtained as the Nb content increased. 2) For the corrosion test in the solution of 0.9% NaCl and 5% HCI, the corrosion behavior of Ti-Nb alloys was similar to ASTM grade 2 CP Ti. 3) For the cytotoxicity test, Ti-Nb alloys showed excellent biocompatibility compared to ASTM grade 2 CP Ti, 316L STS and Co-Cr alloys.

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

Effects of Blasting and Acidic Treatment on the Corrosion Characteristics of Dental Implant Fabricated with Cp-Ti and Ti-6Al-4V Alloy (Cp-Ti와 Ti-6Al-4V 합금으로 제조된 치과용 임플란트의 부식특성에 관한 블라스팅과 산세처리의 영향)

  • Moon, Young-Pil;Choe, Han-Cheol;Park, Su-Jung;Kim, Won-Gi;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.190-197
    • /
    • 2006
  • The effects of blasting and acidic treatment on the corrosion characteristics of dental implant fabricated with Cp-Ti and Ti-6Al-4V alloy have been researched by using electrochemical methods. The fabricated implants were cleaned and sandblasted by $Al_2O_3$ powder and then acidic treatment was carried out in nitric acid solution. The surface morphology were observed using scanning electron microscope. The corrosion behaviors were investigated using potentiosat and EIS in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The potentio-dynamic test in 0.9% NaCl indicated that the corrosion potential of blasting and acidic treated implant was lower than that of non treated implant, but current density was higher than that of non treated implant. From the cyclic potentiodynamic test results of Ti implant, the passivation current density of blasting and acidic treated implant slightly higher than that of non treated implant. From A.C. impedance test results in 0.9% NaCl solution, polarization resistance($R_p$) value of blasting and acidic treated implant was lower than that of non treated implant. In case of blasting and acidic treated implant surface, the pits were observed in valley and crest of implant surface.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Microstructure and Corrosion Resistance of Ti-15Sn-4Nb Alloy with Hf Adding Element (Hf가 첨가된 생체용 Ti-15Sn-4Nb 합금의 미세조직 및 내식성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Cho, Kyu-Zong;Yoon, Taek-Rim;Park, Hyo-Byung
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2001
  • This study is focusing on the improvement of problems of Ti-6Al-4V alloy. A new Ti based alloy, Ti-15Sn-4Nb, have designed to examine any possibility of improving the mechanical properties and biocompatibility. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $100^{\circ}C$ for 24h. All specimens were solution treated at $812^{\circ}C$ and aged at $500^{\circ}C$ for 10h. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test and immersion test inl%Lactic acid solutions. Ti-15Sn-4Nb system alloys showed Widmanstatten microstructure after solution treatment which is typical microstructure of ${\alpha}+{\beta}$ type Ti alloys. Analysing the corrosion resistance of Ti alloys, it was concluded that the passive films of Ti-15Sn-4Nb system alloys are more stable than that of Ti-6Al-4V alloys. Also, the corrosion resistance of Ti-15Sn-4Nb system alloys was improved with adding elements, Hf. It was analysed that the passive film of the Ti-15Sn-4Nb alloy which was formed in air atmosphere was consisted of TiO2, SnO and NbO through X-ray photoelectron spectroscopy(XPS) analysis.

  • PDF