• 제목/요약/키워드: Potentiodynamic Polarization

검색결과 302건 처리시간 0.022초

납착법과 레이저융합법이 치과용 합금의 부식에 미치는 영향 (THE EFFECT OF SOLDER AND LASER WELD ON CORROSION OF DENTAL ALLOYS)

  • 백진;우이형;최대균;최부병
    • 대한치과보철학회지
    • /
    • 제43권2호
    • /
    • pp.264-279
    • /
    • 2005
  • Statement of problem. Intraoral corrosion not only affects the esthetic and function of metallic dental restoration, but also has biologic consequences as well. Therefore, corrosion is considered a primary factor when choosing the dental alloy and laboratory technique. Purpose. The objective of this study was to compare the effects of solder and laser weld on corrosion Material and methods. Test specimens were made of 2 types of gold alloys, Co-Cr and Ni-Cr alloy and fabricated 3 methods, respectively: as cast, solder, and laser weld. For the analysis of corroding properties, potentiodynamic polarization test and immersion test conducted. The potentiodynamic polarization scan curve were recorded in 0.9% NaCl solution(pH 7) using Potentiostat/Galyanostat Model 273A. All specimens were exposed to 0.9% NaCl solution(pH 2.3) during 14 days. Elemental release into corrosive solution was measured by atomic emission spectrometry Differences in corrosion potential and mass release were determined using ANOVA. Results and conclusion. Through analyses of the data, following results were obtained. 1. In Pontor MPF and Wiron 99, corrosion potential of the solder group was statistically lower than as cast and laser weld group (p<0.05) , but there was no difference between corrosion potential of solder group and laser weld group in Pontor MPF and no differences between as cast and laser weld group (p>0.05). In Jel-Bios 10 and Wirobond, there was no difference of corrosion potential according to joining methods(p>0.05). 2. In all tested alloys, the amount of released metallic ion was greatest in the solder group(p<0.05). There was no difference between as cast group and laser weld group in Jel-Bios 10 and Wirobond(p>0.05). 3. In scanning electron microscopic examination. except soldered Wiron 99 specimens, it is impossible to discriminate the corrosive property of solder and laser weld. 4. Under the this experimental circumstances, laser weld appears superior to the solder when corrosion is considered.

타이타늄 합금에서 산소발생전위 지연이 부동태 피막 특성과 국부부식 저항성에 미치는 영향 (Effect of Delayed Oxygen Evolution in Anodic Polarization on the Passive Film Characteristic and Localized Corrosion Resistance of Titanium Alloys)

  • 오유수;서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2020
  • The objective of this study was to investigate delayed oxygen evolution and localized corrosion resistance of titanium alloys by performing potentiodynamic polarization, potentiostatic polarization, and Mott-Schottky measurements. Delayed oxygen evolution was compared among titanium alloys, 316 stainless steel, and platinum. Difference in delayed oxygen evolution between titanium alloys and other metals was attributed to specific surface characteristic of each metal. Delayed oxygen evolution of titanium alloys resulted from the predominant process of ionic conduction over electronic conduction. The effect of oxygen evolution on localized corrosion of titanium alloys was investigated using electrochemical critical localized corrosion temperature (E-CLCT) technique. Mott-Schottky measurement was performed to clarify the difference in film properties between titanium alloys and stainless steels. Titanium alloys were found to have much lower donor density than stainless steels by 1/28. These results indicate that delayed oxygen evolution has little influence on the concreteness of passive film and the resistance to localized corrosion of titanium alloys.

Inhibition Effect of Nevirapine an Antiretroviral on the Corrosion of Mild Steel Under Acidic Condition

  • Bhat, J. Ishwara;Alva, Vijaya D.P.
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.835-841
    • /
    • 2011
  • Corrosion inhibition of mild steel by nevirapine, an antiretroviral has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy technique and weight loss methods. The experimental results suggested, nevirapine is a good corrosion inhibitor for mild steel in 1M hydrochloric acid medium and the inhibition efficiency increased with increase in inhibitor concentration. The kinetic parameters for corrosion process and thermodynamic parameters for adsorption process were calculated and discussed. The adsorption of the inhibitor on the surface of mild steel followed Langmuir adsorption isotherm.

PEO공법을 적용한 마그네슘 합금의 공정 변수에 따른 산화 피막의 특성

  • 남석현;이재은;나일채;김용균
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.125.1-125.1
    • /
    • 2016
  • 마그네슘 합금은 소재 특성상 표면처리가 필수불가결하다. 금속의 다양한 표면처리 방법 중 마그네슘 합금은 크게 화학적 반응을 이용해 산화막을 생성해 피막을 올리는 화성처리법과, 전해액 내에 침지시켜 전기를 걸어주어 금속 표면에 플라즈마 아크를 통해 산화막을 생성하는 PEO공법 두 가지 방법이 있다. 본 연구에서는 마그네슘 합금 소재에 PEO공법을 적용한 산화피막의 공정 변수에 따른 특성을 SEM, EDS, SST, potentiodynamic polarization 등으로 분석하였다.

  • PDF

질소이온의 주입이 생체안전성 티타늄임플란트의 내식성에 미치는 영향 (Effect of Nitrogen Ion Implantation on Corrosion Resistance of Biocompatible Ti Implant)

  • 최종운;손선희
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.134-139
    • /
    • 1999
  • In this study, PSII(plasma source ion implantation) was used to improve the biocompatibility of bone-anchored Ti implant. According to potentiodynamic anodic polarization test in deaerated Hank's solution, open circuit potential of ion implanted specimens were increased compare to that of unimplanted specimen ; besides, passive current density and critical anodic current density of ion implanted specimens were lower than unimplanted specimen.

  • PDF

Chemical Protection of Stainless Steel by $TiO_2$ Coating Using Dip-Coating Technique

  • Kim, Kyung-Nam;Shin, Dae-Yong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2009
  • Sol-gel coatings of $TiO_2$ have been prepared from $TiO_2$ sol and deposited by dip-coating technique on 316L stainless steel sheets in order to study the electrochemical behaviorin corrosive solutions. The influence of the coatings on the chemical corrosion of the substrate has been evaluated by potentiodynamic polarization curves in different aqueous NaCl solution at $25^{\circ}C$.

  • PDF

Schiff Bases as Anticorrosive Additives for Mild Steel Corrosion in Acid Media

  • Abirami, M.;Sasikala, S.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 2009
  • The influence of Schiff bases on the corrosion inhibition of mild steel in 1 M $H_2SO_4$ have been investigated by weight loss, gasometry, impedance and polarization techniques. The results obtained reveal that these compounds act as good inhibitors. The inhibition efficiency of Schiff bases increased with concentration and synergistically increased on addition of chromate, sulphate and halide ions. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitors are of mixed type but they are more cathodic in nature. The adsorption of these compounds on mild steel surface for both the acids were found to obey Langmuir adsorption isotherm. The surface morphology was studied by SEM and UV reflectance spectra.

Electrochemical Adsorption Properties and Inhibition of Zinc Corrosion by Two Chromones in Sulfuric Acid Solutions

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Saber, Ahmed
    • 대한화학회지
    • /
    • 제58권2호
    • /
    • pp.160-168
    • /
    • 2014
  • The electrochemical behavior and corrosion inhibition of zinc in 0.5 M $H_2SO_4$ in the absence and presence of some chromones has been investigated using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The presence of these investigated compounds in the corrosive solutions decrease the weight loss, the corrosion current density, and double layer capacitance but increases the charge transfer resistance. Polarization studies were carried out at room temperature, and showed that all the studied compounds act as mixed type inhibitors with a slight predominance of cathodic character. The effect of temperature on corrosion inhibition has been studied and the thermodynamic activation and adsorption parameters were determined and discussed. The adsorption of the investigated compounds on zinc was found to obey Langmuir adsorption isotherm.

Evaluation of Protective Ability of High Solid Novolac Clear Coatings Through Electrochemical Techniques

  • Ramesh, D.;Shakkthivel, P.;Manickam, A. Susai;Kalpana, A.;Vasudevan, T.
    • Corrosion Science and Technology
    • /
    • 제5권2호
    • /
    • pp.62-68
    • /
    • 2006
  • Solvent free high solid coatings are increasingly used as they posses number of advantages such as, lower cost per unit film thickness, better performance and eco-friendliness. In the present study polymeric film-forming materials such as aniline-novolac (ANS), cresol-novolac (CNS) and acrylic copolymer blended cresol-novolac (ACNS) coating materials have been prepared. The corrosion resistance properties of the prepared high solid coating materials have been evaluated through potential-time, potentiodynamic polarization and electrochemical impedance studies (EIS). Among the three coating systems, cresol-novolac polymer coated substrates offer better corrosion resistance property and the order of the performance was found as CNS > ACNS > ANS. We can recommend these systems for use in automobile applications.