• 제목/요약/키워드: Potential well structure

검색결과 534건 처리시간 0.022초

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

Explorations of the Electrostatic Character of a Model of Human Immunodeficiency Virus Type 1 Integrase to Offer a Prediction for the Orientation and Nature of DNA binding

  • Jung, Eun-Sun;Kwon, Yong-Jung
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.163-171
    • /
    • 2006
  • Human immunodeficiency virus type 1 (HIV-1) integrase plays a critical role in the life cycle of the HIV virus. An ability to accurately map its electrostatic potential, and then use this information to predict the manner in which DNA will bind to the active site of the catalytic domain could provide a foundation for inhibitory design. Attempts to discern the crystal structure of HIV-1 integrase have proven problematic, especially in the region of enzymatic activity, that being those residues involved in the catalysis of the integration of viral DNA into the host cell. However, there is a structural correlation in to the region of interest with avian sarcoma virus (ASV), so a homology model utilizing this similarity was constructed to approximate the behavior/structure of the undetermined portions of the HIV-1 integrase crystal. After this model was constructed and its energy minimized, electrostatic calculations were carried out on the substance, so that an electrostatic potential map was constructed. Using this information, it was determined that DNA binding was oriented so as to exploit the regions of positive potential nearby the active site, as well as the positive potential of the magnesium cofactors.

  • PDF

고 에너지 이온 주입된 CMOS 쌍 우물 구조의 레치업 면역성 예측을 위한 TCAD 모의실험 연구 (A Study on the TCAD Simulation to Predict the Latchup Immunity of High Energy Ion Implanted CMOS Twin Well Structures)

  • 송한정;김종민;곽계달
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.106-113
    • /
    • 2000
  • This study describes how a properly calibrated simulation method could be used to investigate the latchup immunity characteristics among the various high energy ion implanted CMOS twin well (retro-grade/BILLI/BL) structures. To obtain the accurate quantitative simulation analysis of retrograde well, a global tuning procedure and a set of grid specifications for simulation accuracy and computational efficiency are carried out. The latchup characteristics of BILLI and BL structures are well predicted by applying a calibrated simulation method for retrograde well. By exploring the potential contour, current flow lines, and electron/hole current densities at the holding condition, we have observed that the holding voltage of BL structure is more sensitive to the well design rule (p+to well edge space /n +to well edge space) than to the retrograde well itself.

  • PDF

Quantum Mechanical Study of van der Waals Complex. Ⅰ.The $H^2$ Dimer Using the DFT and the Multi-Coefficient G2/G3 Methods

  • 김창신;김상준;이용식;김용호
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권5호
    • /
    • pp.510-514
    • /
    • 2000
  • Molecular hydrogen dimer, ($H_2)_2$ is a weakly bound van der Waals complex. The configuration of two hydrogen molecules and the potential well structure of the dimer have been the subjects of various studies among chemists and astrophysicists. In this study, we used DFT, MCG2, and MCG3 methods to determine the structure and energy of the molecular hydrogen dimer. We compared the results with previously reported ab initio method results. The ab initio results were also recalculated for comparison. All optimized geometries obtained from the MP2 and DFT methods are T-shaped. The H-H bond lengths for the dimer are almost the same as those of monomer. The center-to-center distance depeds on the levels of theory and the size of the basis sets. The bond lengths of the $H_2$ molecule from the MCG2 and MCG3 methods are shown to be in excellent agreement with the experimental value. The geometry of optimized dimer is T-shaped, and the well depths for the dimerization potential are very small, being 23 $cm-^1$ and 27 $cm-^1$ at the MCG2 and MCG3 levels, respectively. In general the MP2 level of theory predicts stronger van der Waals than the DFT, and agrees better with the MCG2 and MCG3 theories.

가돌리니아 첨가 이산화우라늄의 점결함 모델에 의한 산소포텐샬 연구 (Defect Model for the Oxygen Potential of Urania doped wit Gadolinia)

  • Park, Kwang-Heon;Kim, Jang-Wook
    • Nuclear Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.321-327
    • /
    • 1991
  • 가돌리니아 첨가 우라니아에 대한 점결함 모델이 순수 우라니아의 점결함구조를 바탕으로 하여 개발되었다. Gd 도펀트는 금속이온자리에 -1 유효전하를 지니고, 주위의 산소침입형을 밀어내어 산소침입형의 자리를 감소시킨다. 산소 공공 농도가 증가하면 Gd 도펀트는 산소공공과 집합체를 형성하게 된다. 이 점결함 모델은 Gd 도펀트의 양의 증가에 따른 산소포텐샬의 증가와 산소 대금추비율이 2일때 급속한 산소포텐샬 변화를 설명하여, 현존하는 실험값과 좋은 일치를 보였다.

  • PDF

Photoelectrochemical characterization of surface-modified CuInS2 nanorod arrays prepared via template-assisted growth and transfer

  • Yang, Wooseok;Kim, Jimin;Oh, Yunjung;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.401-401
    • /
    • 2016
  • Although vertically aligned one-dimensional (1D) structure has been considered as efficient forms for photoelectrode, development of efficient 1D nanostructured photocathode are still required. In this sense, we recently demonstrated a simple fabrication route for CuInS2 (CIS) nanorod arrays from aqueous solution by template-assisted growth-and-transfer method and their feasibility as a photoelectrode for water splitting. In this study, we further evaluated the photoelectrochemical properties surface-modified CIS nanorod arrays. Surface modification with CdS and ZnS was performed by successive ion layer adsorption and reaction (SILAR) method, which is well known as suitable technique for conformal coating throughout nanoporous structure. With surface modification of CdS and ZnS, both photoelectrochemical performance and stability of CuInS2 nanorod arrays were improved by shifting of the flat-band potential, which was analyzed both onset potential and Mott-schottky plot.

  • PDF

Effect of Double Schottky Barrier in Gallium-Zinc-Oxide Thin Film

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권6호
    • /
    • pp.323-329
    • /
    • 2017
  • This reports the electrical behavior, bonding structure and Schottky contact of gallium-zinc-oxide (GZO) thin film annealed at $100{\sim}400^{\circ}C$. The mobility of GZO with high density of PL spectra and crystal structure was also increased because of the structural matching between GZO and Si substrate of a crystal structure. However, the GZO annealed at $200^{\circ}C$ with an amorphous structure had the highest mobility as a result of a band to band tunneling effect. The mobility of GZO treated at low annealing temperatures under $200^{\circ}C$ increased at the GZO with an amorphous structure, but that at high temperatures over $200^{\circ}C$ also increased when it was the GZO of a crystal structure. The mobility of GZO with a Schottky barrier (SB) was mostly increased because of the effect of surface currents as well as the additional internal potential difference.

층상구조 망간산화물에서의 구조적 안정도와 결정성과의 관계 (Relationship between Structural Stability and Crystallinity in Layered Manganese Oxide)

  • 황성주
    • 대한화학회지
    • /
    • 제48권1호
    • /
    • pp.46-52
    • /
    • 2004
  • 층상구조를 갖는 망간산화물에서 결정성과 구조적 안정도 간의 관계에 대해 조사하였다. 좋은 결정성을 갖는 망간산화물은 고상합성법-이온교환법을 이용하여 합성하였으며, 나노결정 망간산화물은 실온에서의 Chimie-Douce 반응을 통해 얻어졌다. 마이크로 라만 분광과 X선 흡수분광 결과는 결정성에 상관없이 이들 화합물에 존재하는 망간이온이 공통적으로 층상구조의 팔면체 자리에 안정화되어 있음을 보여준다. 미분전하용량 분석 결과는 나노결정 화합물의 층상구조가 전기화학적 충방전 과정 동안 안정하다는 사실을 보여주며, 이와는 대조적으로 좋은 결정성을 갖는 층상구조 화합물의 경우 현저한 구조변화를 겪는다는 사실을 보여준다. 마이크로 라만 분광 결과는 이러한 구조전이가 층상 구조로부터 스핀넬 타입 구조로의 변화에 해당함을 보여준다. 위 실험 결과로부터 나노결정성이 층상구조의 안정도를 향상시킨다는 결론을 얻을 수 있었다.

미세먼지 농도의 공간적 현황 및 잠재영향인자를 고려한 환경계획적 대응 방향 (Environmental Planning Contermeasures Considering Spatial Distribution and Potential Factors of Particulate Matters Concentration)

  • 성선용
    • 한국환경복원기술학회지
    • /
    • 제23권1호
    • /
    • pp.89-96
    • /
    • 2020
  • Adverse impact of Particulate Matters(PM10, PM2.5; PMs) significantly affects daily lives. Major countermeasures for reducing concentration of PMs were focused on emission source without considering spatial difference of PMs concentration. Thus, this study analyzed spatial·temporal distribution of PMs with observation data as well as potential contributing factors on PMs concentration. The annual average concentration of PMs have been decreased while the particulate matter warnings and alerts were significantly increased in 2018. The average concentration of PMs in spring and winter was higher than the other seasons. Also, the spatial distribution of PMs were also showed seasonality while concentration of PMs were higher in Seoul-metropolitan areas in all seasons. Climate variables, emission source, spatial structure and potential PM sinks were selected major factors which could affects on ambient concentrations of PMs. This paper suggest that countermeasures for mitigating PM concentration should consider characteristics of area. Climatic variables(temperature, pressure, wind speed etc.) affects concentrations of PMs. The effects of spatial structure of cities(terrain, ventilation corridor) and biological sinks(green infrastructure, urban forests) on concentration of PMs should be analyzed in further studies. Also, seasonality of PMs concentration should be considered for establishing effective countermeasures to reduce ambient PMs concentration.

Global Productivity and Market Structure Implications of the US-China Trade War: A CGE Modeling Approach

  • Jung, Jaewon
    • Journal of Korea Trade
    • /
    • 제24권8호
    • /
    • pp.153-170
    • /
    • 2020
  • Purpose - As the US-China trade war intensifies and lasts long time, there is growing concern about its potential effects on the global economy. In particular, for the countries like Korea that have a large economic dependence on the economy of the two countries, the US-China trade war may have a great repercussion in many ways. The aim of this paper is to investigate the global productivity and market structure implications of the US-China trade war for Korea, as well as for other surrounding countries and regions. Design/methodology - In this paper, we develop a full multi-country/region multi-sector computable general equilibrium (CGE) model of global trade incorporating heterogeneous workers and firms in individual skill levels and used technologies. We then calibrate the model using a global Social Accounting Matrix (SAM) dataset extracted from the recently released GTAP 10 Database, and assess the potential effects of the US-China trade war on the aggregate real productivity and the market structure for Korea, as well as for other surrounding countries and regions. Findings - We show that the US-China trade war may largely affect the aggregate productivity in each sector in each country/region, as well as the global market structure through entry and exit of firms, which results finally in considerable changes in the industrial comparative advantage of each country/region. Though the effects are diverse sector by sector, the results show that Korea may also be affected significantly: concerning the real productivity implications, it is shown that the machinery industry may be affected the most negatively; on the other hand, it is shown that the number of exporting firms may decrease the most in the other transports industry. Originality/value - As the US-China trade war intensifies, many studies have tried to estimate the possible implications, and for this usually the CGE models have largely been used as the standard tool for evaluating the impacts of changes in trade policies. Standard CGE models, however, cannot be used to assess the global productivity and market structure implications due to the symmetric and simplified base assumptions. This paper is the first to analyze and quantify the possible impacts of the US-China trade war on the aggregate productivity and global market structure using a CGE model incorporating endogenous skill-technology assignment of heterogeneous workers and firms.