• 제목/요약/키워드: Potential for Cracking

검색결과 113건 처리시간 0.021초

선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구 (Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships)

  • 김성종;고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • 제2권4호
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)

  • Karayannis, Chris G.;Voutetaki, Maristella E.;Chalioris, Constantin E.;Providakis, Costas P.;Angeli, Georgia M.
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.997-1018
    • /
    • 2015
  • Structural health monitoring along with damage detection and assessment of its severity level in non-accessible reinforced concrete members using piezoelectric materials becomes essential since engineers often face the problem of detecting hidden damage. In this study, the potential of the detection of flexural damage state in the lower part of the mid-span area of a simply supported reinforced concrete beam using piezoelectric sensors is analytically investigated. Two common severity levels of flexural damage are examined: (i) cracking of concrete that extends from the external lower fiber of concrete up to the steel reinforcement and (ii) yielding of reinforcing bars that occurs for higher levels of bending moment and after the flexural cracking. The purpose of this investigation is to apply finite element modeling using admittance based signature data to analyze its accuracy and to check the potential use of this technique to monitor structural damage in real-time. It has been indicated that damage detection capability greatly depends on the frequency selection rather than on the level of the harmonic excitation loading. This way, the excitation loading sequence can have a level low enough that the technique may be considered as applicable and effective for real structures. Further, it is concluded that the closest applied piezoelectric sensor to the flexural damage demonstrates higher overall sensitivity to structural damage in the entire frequency band for both damage states with respect to the other used sensors. However, the observed sensitivity of the other sensors becomes comparatively high in the peak values of the root mean square deviation index.

항공용 고강도 2xxx계 알루미늄 합금의 3.5 % 염수 환경에서의 응력부식균열 민감도 (Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution)

  • 최희수;이다은;안수진;이철주;김상식
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.738-747
    • /
    • 2018
  • For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024-T62, 2124-T851 and 2050-T84 alloys in a 3.5 % NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5 % NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of $10^{-6}/sec$ in a 3.5 % NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5 % NaCl solution is discussed based on fractographic and micrographic observations.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

인가전위 하에서 HT-60강 용접부의 SCC특성 평가 (Evaluation on the Characteristics of Stress Corrosion Cracking for the Weldment of HT-60 Steel under Applied Potentials)

  • 나의균
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.896-903
    • /
    • 2002
  • The susceptibility of SCC for the weldment and PWHT specimens of HT-60 steel was evaluated using a slow strain rate method under applied potential by means of the potentiostat in synthetic seawater. In case of the parent, anodic polarization voltage was inappropriate in elongating the time to failure(TTF). -0.8V corresponding to cathodic protection range is most effective in improving the SCC resistance against corrosive environment. In case of the weldment, the values of reduction of area(ROA) and TTF at -0.68V corresponding to cathodic polarization value were 45.2% and 715,809sec which were the largest and longest life among other applied potentials. Those were vise versa at -1.1V. In case of the PWHT specimens, TTF and ROA at -0.68V was longest and largest like the weldment. Besides, PWHT is effective in prolonging the time to failure of the welded off-shore structure due to softening of effect. Regardless of the weldment and PWHT specimen, as corrosion rate gets higher, TTF becomes shorter and deformation behaviour for the weldment and PWHT specimen at -1.1V was shown to be irregular. Finally, it was found that specimens showed brittle fracture at -1.1V, but more ductile fracture accompanying the micro-cracks at applied potential of -0.68V.

온도 변화에 지배되는 LLCC Solder접합부에서 균열이 일어난 계면에 대한 불순물 편석 (IMPURITY SEGREGATION ON CRACKED GRAIN BOUNDARIES IN LLCC SOLDER JOINTS DURING THERMAL CYCLING)

  • 이성민
    • 한국재료학회지
    • /
    • 제4권3호
    • /
    • pp.329-333
    • /
    • 1994
  • 1시간 주기로 -$35^{\circ}C$에서 +$125^{\circ}C$까지의 온도 변화에 지배되는 Leadless Ceranic Chip Carriers(LLCC'S)의 Solder접합부에서 균열이 계면을 따라 일어났다. 이런 균열이 계면을 취약하게 하는 어떤 불순물에 의한 것이 아닌지를 Scanning Auger Microprobe(SAM)을 이용해 조사했다. 그 결과 계면을 따라 일어나는 균열이 계면의 산화에 의해 일어날 수 있다는 것이 발견되었고, 그에 따라 산화에 취약해진 계면을 따라 일어나는 이런 종류의 피로 파괴현상에 대한 모델을 제시했다.

  • PDF

The Effect of Manipulating Package Construct and Leadframe Materials on Fracture Potential of Plastically Encapsulated Microelectronic Packages During Thermal Cycling

  • Lee, Seong-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권3호
    • /
    • pp.28-32
    • /
    • 2001
  • It was studied in the present work how the thermal cycling performance of LOC (lead on chip) packages depends on the package construct or leadframe materials. First, package body thickness and Au wire diameter were manipulated for the selection of proper package design. Secondly, two different types of leadframe materials (i.e. copper and 52%Fe-48%Ni alloy) were tested to determine the better material for improved reliability margin of plastically encapsulated microelectronic packages. This work shows that manipulating package body thickness was more effective than an increase of Au wire from 23$\mu\textrm{m}$ to 33$\mu\textrm{m}$ for the prevention of wire debonding failure. Further, this work indicates that the LOC packages including the copper leadframes can be more susceptible to thermal cycling reliability degradation due to chip cracking than those including the alloy leadframes.

  • PDF

증기발생기 전열관 2차측 응력부식균열의 실험실적 모사 방법 (Laboratorial technique for fabrication of outer diameter stress corrosion cracking on steam generator tubing)

  • 이재민;김성우;황성식;김홍표;김홍덕
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.112-119
    • /
    • 2014
  • In this work, it is aimed to develop the fabrication method of axial stress corrosion cracking (SCC) defects having various sizes, on the outer diameter surface of the steam generator (SG) tubings. To control the length of the artificial SCC defect, the specific area of the SG tubing samples was exposed to an acidic solution after a sensitization heat treatment. During the exposure to an acidic solution, a direct current potential drop (DCPD) method was adopted to monitor the crack depth. The size of the SCC defect was first evaluated by an eddy current test (ECT), and then confirmed by a destructive examination. From the comparison, it was found that the actual crack length was well controlled to be similar to the length of the surface exposed to an acidic solution (5, 10, 20 or 30 mm in this work) with small standard deviation. From in-situ monitoring of the crack depth using the DCPD method, it was possible to distinguish a non-through wall crack from a through wall crack, even though the depth of the non-through wall crack was not able to be precisely controlled. The fabrication method established in this work was useful to simulate the SCC defect having similar size and ECT signals as compared to the field cracks in the SG tubings of the operating Korean PWRs.

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.