• Title/Summary/Keyword: Potential energy anomaly

Search Result 11, Processing Time 0.026 seconds

Seasonal Variations and Characteristics of the Stratification Depth and Strength in the Seas Near the Korea Peninsular using the Relative Potential Energy Anomaly (한반도 근해의 상대적 위치에너지 편차 변화를 이용한 성층화의 특성과 계절별 변화에 대한 연구)

  • Cho, Chang-Bong;Kim, Young-Gyu;Chang, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • In this paper, we have proposed a method for quantization of the stratification strength in the sea water and analysing the distributions of the maximum stratification depths calculated by the method at the seas near the Korean peninsular. For calculating the stratification strength, modified and applied the potential energy anomaly formular which was suggested by Simpson in 1977. The data had been collected by NFRDI from 1971 to 2008 were used to determine the maximum vertical density gradient depth and the relative potential energy anomaly at that depth. In the East Sea, the stratification depth has become deepened about 20m in February and April since 1971. In Yellow-South Sea, the maximum density gradient depth has been deepened about 10m only in December during the same period and the difference of the stratification depth between summer and winter has been enlarged. These trends of variation of stratification strength and depth near the Korean peninsular should be investigated more carefully and continuously. And the results of these studies could be adopted for the more efficient operation of underwater weapon and detection systems.

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

Tidal Front in the Main Tidal Channel of Kyunggi Bay, Eastern Yellow Sea

  • Lee, Heung-Jae;Lee, Seok;Cho, Cheol-Ho;Kim, Cheol-Ho
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The detailed structure of a tidal front and its ebb-to flood variation in the main tidal channel of the Kyunggi Bay in the mid-west coast of Korea were investigated by analyzing CTD data and drifter trajectories collected in late July 1999. A typical tidal front was formed in water about 60 m deep at the mouth of the channel. Isotherms and isohalines in the upper layer above the seasonal pycnocline in the offshore stratified zone inclined upward to the sea surface to form a surface front, while those in the lower layer declined to the bottom front. The location of the front is consistent with $100 S^3/cm^2$ of the mixing index H/U defined by Simpson and Hunter (1974), where H is the water depth and U is the amplitude of tidal current. The potential energy anomaly in the frontal zone varied at an ebb-to flood tidal cycle, showing a minimum at slack water after ebb but a maximum at slack water after flood. This ebb-to flood variation in potential energy anomaly is not accounted for by the mixing index. We conclude that on- and offshore displacement of the water column by tidal advection is responsible for the ebb-to-flood variation in the frontal zone.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Development of deep-seated geothermal energy in the Pohang area, Korea (경북 포항지역에서의 심부 지열수자원 개발 사례)

  • Song, Yoonho;Lee, Tae-Jong;Kim, Hyoung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.693-696
    • /
    • 2005
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-temperature geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating. Surface geologic and geophysical surveys including Landsat 1M image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT), and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. In 2004, two test wells of 1.1km and 1.5km depths have been drilled and various kinds of borehole survey including geophysical logging, pumping test, SP monitoring, core logging and sample analysis have followed. Temperature of geothermal water at the bottom of 1.5km borehole reached over $70^{\circ}C$ and the pumping test showed that the reservoir contained huge amount of geothermal water. Drilling for the production well of 2 km depth is on going. After test utilization and the feasibility study, geothermal water developed from the production well is going to be provided to nearby apartments.

  • PDF

Seasonal Variation of Density Stratification in the Saemangeum Waters, Korea (새만금해역에서 밀도성층의 계절 변동)

  • Kim, Tae-In;Lee, Hyung-Rae;Chang, Kyung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.339-352
    • /
    • 2006
  • Seasonal and tidal variations of density stratification in the Saemangeum waters are investigated based on synoptic CTD observations between July 2003 and September 2005. CTD data used in this study are those obtained after closing the dike No. 4 and before closing the two final gaps, the Sinsi and the Garyeok, on the Saemangeum tidal harrier. A total of 19 field campaigns comprehend a wide temporal spectrum, that is, few seasons, spring and neap tides, and high and low waters. In addition, ADCPs were anchored and CTDs were cast at three stations for 25 h in July 2005. Water columns are vertically homogeneous in autumn and winter. The vertical homogeneity persists in spring but with an occasional weak stratification in i:he northern part of the Gogunsan Islands. Increased reshwater runoff tends to stabilize the water columns and strong density stratification is established in summer. The mean potential energy anomaly (PEA) in summer used as a stratification parameter is the largest $(27.7\;J\;m^{-3})$ in the northern part of the Gogunsan Islands where the Geum River discharge dominates, the smallest $(16.9\;J\;m^{-3})$ is in the inner area of the barrier, in between the two $(21.6\;J\;m^{-3})$ in the southern part of the Gogunsan Islands. Whereas the stratification is generally strengthened in summer, strong winds or large tidal currents over the shallow depths frequently destratify the water column near the mouth of river runoff inside the tidal barrier. Periodic stratification, the development of stratification on the ebb and its breakdown on the flood, occurs in the mid-area inside the barrier induced by the tidal straining, which can also be found in the results of 25 h observation.

The Spatial Characteristics of Stratification in Deukryang Bay, Korea (밀도류 효과에 으히나 득령만의 성층변동 특성)

  • Byung-Gul Lee;Kyu-Dae Cho
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.223-232
    • /
    • 1998
  • The spatial characteristics of stratification In Deukryang Bay were studded using observed data and analytical models. From the description of the density structure and its the potential energy anomaly (PEA) from observed data along longitudinal direction (from the mouth to head of the bays, we found that the stratification Intensity could be changed strongly by density current effect during the spring-neap tidal cycle, and depth variation. To find out density current effect for the formation of the stratification In detail, we Implemented a diagnostic approach by using the modified analytical model including density current, tidal current, surface heating and wind stirring. The model allowed for the observed similarities for the whole domain in the bay and increased tidal mixing efficiency value s up to 0.006-0.007 as compared to the results without density current effect. We found that the density current effect was also an important key factor In determining the formation of the spatial distribution of stratification.

  • PDF

Stratification Variation of Summer and Winter in the South Sea of Korea (한국 남해의 여름과 겨울철 성층 변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.119-125
    • /
    • 2007
  • In order to illustrate the variation cf stratification and to know the effects of the temperature and the salinity on the stratification in the South Sea of Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used. The oceanographic data were obtained in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). V in August is generally high in offshore and low in near shore. However, in February, V in the near shore is higher than that cf the offshore due to the vertical temperature gradient between surface and bottom layer caused by the expansion of South Korean Coastal Waters (SKCW). In summer, the increase of the atmospheric heating acts on the stratification as the buoyancy forcing. In most cases, the effect cf the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent of the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect of the salinity is also significant. In winter, V is very low due to the decrease cf the buoyancy forcing, but some stations show the relatively high V due to the expansion of SKCW and salinity in winter unlike that in summer makes the stratification weak.

  • PDF

Stratification Variation of Summer and Winter in the South Waters of Korea (한국남해의 여름과 겨울철 성층변동)

  • Lee, Chung-Il;Koo, Do-Hyung;Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.43-50
    • /
    • 2007
  • In order to calculate the strength and to. see the variation af the stratification in the Southern Waters af Korea, the stratification parameter defined as potential energy anomaly (PEA, $V(J/m^3)$) introduced by Simpson and Hunter (1974) was used The data used in this paper were observed in August 1999 and February 2000 by National Fisheries Research and Development Institute (NFRDI). Also to know the effects af the temperature and the salinity an the stratification respectively, averaged temperature and salinity were used in the process af calculation the parameter. V is generally high in the offshore. However, in February, V in the onshore is higher than that of the offshore due to the vertical temperature gradient caused by the expansion of South Korean Coastal Waters (SKCW). In the summer, the increase af the atmospheric heating, the temperature inversion phenomenon act an the stratification as the buoyancy forcing. In most cases, the effects of the temperature on the stratification is stronger than that of the salinity. The temperature effect is predominantly due to the extent af the intrusion of Tsushima Warm Current into the study area. However, at stations where V is high the effect af the salinity is also significant. In the winter, V is very low due to the decrease of the buoyancy forcing, but same stations show the relatively high V due to the expansion of SKCW and Tsushima Warm Current.

  • PDF

A Study on Data-driven Modeling Employing Stratification-related Physical Variables for Reservoir Water Quality Prediction (취수원 수질예측을 위한 성층 물리변수 활용 데이터 기반 모델링 연구)

  • Hyeon June Jang;Ji Young Jung;Kyung Won Joo;Choong Sung Yi;Sung Hoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.143-143
    • /
    • 2023
  • 최근 대청댐('17), 평림댐('19) 등 광역 취수원에서 망간의 먹는 물 수질기준(0.05mg/L 이하) 초과 사례가 발생되어, 다수의 민원이 제기되는 등 취수원의 망간 관리 중요성이 부각되고 있다. 특히, 동절기 전도(Turn-over)시기에 고농도 망간이 발생되는 경우가 많은데, 현재 정수장에서는 망간을 처리하기 위해 유입구간에 필터를 설치하고 주기적으로 교체하는 방식으로 처리하고 있다. 그러나 단기간에 고농도 망간 다량 유입 시 처리용량의 한계 등 정수장에서의 공정관리가 어려워지므로 사전 예측에 의한 대응 체계 고도화가 필요한 실정이다. 본 연구는 광역취수원인 주암댐을 대상으로 망간 예측의 정확도 향상 및 예측기간 확대를 위해 다양한 머신러닝 기법들을 적용하여 비교 분석하였으며, 독립변수 및 초매개변수 최적화를 진행하여 모형의 정확도를 개선하였다. 머신러닝 모형은 수심별 탁도, 저수위, pH, 수온, 전기전도도, DO, 클로로필-a, 기상, 수문 자료 등의 독립변수와 화순정수장에 유입된 망간 농도를 종속변수로 각 변수에 해당하는 실측치를 학습데이터로 사용하였다. 그리고 데이터기반 모형의 정확도를 개선하기 위해서 성층의 수준을 판별하는 지표로서 PEA(Potential Energy Anomaly)를 도입하여 데이터 분석에 활용하고자 하였다. 분석 결과, 망간 유입률은 계절 주기에 따라 농도가 달라지는 것을 확인하였고 동절기 전도시점과 하절기 장마기간 난류생성 시기에 저층의 고농도 망간이 유입이 되는 것을 분석하였다. 또한, 두 시기의 망간 농도의 변화 패턴이 상이하므로 예측 모델은 각 계절별로 구축해 학습을 진행함으로써 예측의 정확도를 향상할 수 있었다. 다양한 머신러닝 모델을 구축하여 성능 비교를 진행한 결과, 동절기에는 Gradient Boosting Machine, 하절기에는 eXtreme Gradient Boosting의 기법이 우수하여 추론 모델로 활용하고자 하였다. 선정 모델을 통한 단기 수질예측 결과, 전도현상 발생 시기에 대한 추종 및 예측력이 기존의 데이터 모형만 적용했을 경우대비 약 15% 이상 예측 효율이 향상된 것으로 나타났다. 본 연구는 머신러닝 모델을 활용한 망간 농도 예측으로 정수장의 신속한 대응 체계 마련을 지원하고, 수처리 공정의 효율성을 높이는 데 기여할 것으로 기대되며, 후속 연구로 과거 시계열 자료 활용 및 물리모형과의 연결 등을 통해 모델의 신뢰성을 제고 할 계획이다.

  • PDF