• Title/Summary/Keyword: Potential Shock

Search Result 294, Processing Time 0.029 seconds

Development of Load Cell Using Fiber Brags Grating Sensors and Differential Method for Structural Health Monitoring (구조 건전성 모니터링을 위한 광섬유 브래그 격자 센서와 차동법을 적용한 로드셀 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.299-307
    • /
    • 2009
  • Emerging fiber optic sensor technologies have shown great potential to overcome the difficulties associated with conventional sensors. Fiber optic sensors are immune to EM noise and electric shock and thus can be used in explosion-prone areas. Several kinds of fiber optic sensors have been developed over the last two decades to take advantage of these merits. There have also been many field applications of fiber optic sensors for structural health monitoring as NDT/HDE. However, very few sensors, particularly a load cell have been successfully commercialized. This Paper Presents a load cell using fiber Bra99 gra1ing (FBG) sensors. The shape of the load cell is a link type, and three FBG sensors are used for measuring strains at three different points. Especially, these strains are processed with a differential method in order to exclude common mode noise such as temperature. Moreover, the sensitivity, the linearity and the resolution of the load cell were successfully verified from the experiment of tension test.

The Antitumor Effect of C-terminus of Hsp70-Interacting Protein via Degradation of c-Met in Small Cell Lung Cancer

  • Cho, Sung Ho;Kim, Jong In;Kim, Hyun Su;Park, Sung Dal;Jang, Kang Won
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.153-162
    • /
    • 2017
  • Background: The mesenchymal-epithelial transition factor (MET) receptor can be overexpressed in solid tumors, including small cell lung cancer (SCLC). However, the molecular mechanism regulating MET stability and turnover in SCLC remains undefined. One potential mechanism of MET regulation involves the C-terminus of Hsp70-interacting protein (CHIP), which targets heat shock protein 90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, we investigated the functional effects of CHIP expression on MET regulation and the control of SCLC cell apoptosis and invasion. Methods: To evaluate the expression of CHIP and c-Met, which is a protein that in humans is encoded by the MET gene (the MET proto-oncogene), we examined the expression pattern of c-Met and CHIP in SCLC cell lines by western blotting. To investigate whether CHIP overexpression reduced cell proliferation and invasive activity in SCLC cell lines, we transfected cells with CHIP and performed a cell viability assay and cellular apoptosis assays. Results: We found an inverse relationship between the expression of CHIP and MET in SCLC cell lines (n=5). CHIP destabilized the endogenous MET receptor in SCLC cell lines, indicating an essential role for CHIP in the regulation of MET degradation. In addition, CHIP inhibited MET-dependent pathways, and invasion, cell growth, and apoptosis were reduced by CHIP overexpression in SCLC cell lines. Conclusion: C HIP is capable of regulating SCLC cell apoptosis and invasion by inhibiting MET-mediated cytoskeletal and cell survival pathways in NCI-H69 cells. CHIP suppresses MET-dependent signaling, and regulates MET-mediated SCLC motility.

SUPPRESSION OF HYDROGEN CONSUMING BACTERIA IN ANAEROBIC HYDROGEN FERMENTATION

  • Park, Woo-Shin;Jang, Nam-J.;Hyun, Seung-H.;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.181-190
    • /
    • 2005
  • Severe loss or hydrogen occurred in most anaerobic hydrogen fermentation reactors. Several selected methods were applied to suppress the consumption of hydrogen and increase the potential of production. As the first trial, pH shock was applied. The pH of reactor was dropped nearly to 3.0 by stopping alkalinity supply and on]y feeding glucose (5 g/L-d). As the pH was increase to $4.8{\pm}0.2,$ the degradation pathway was derived to solventogenesis resulting in disappearance of hydrogen in the headspace. In the aspect of bacterial community, methanogens weren't detected after 22 and 35 day, respectively. Even though, however, there was no methanogenic bacterium detected with fluorescence in-situ hybridization (FISH) method, hydrogen loss still occurred in the reactor showing a continuous increase of acetate when the pH was increased to $5.5{\pm}0.2$. This result was suggesting the possibility of the survival of spore fanning acetogenic bacteria enduring the severely acidic pH. As an alternative and additive method, nitrate was added in a batch experiment. It resulted in the increase of maximum hydrogen fraction from 29 (blank) to 61 % $(500\;mg\;NO_3/L)$. However, unfortunately, the loss of hydrogen occurred right after the depletion of nitrate by denitrification. In order to prevent the loss entangled with acetate formation, $CO_2$ scavenging in the headspace was applied to the hydrogen fermentation with heat-treated sludge since it was the primer of acetogenesis. As the $CO_2$ scavenging was applied, the maximum fraction of hydrogen was enhanced from 68 % to 87 %. And the loss of hydrogen could be protected effectively.

Effect of Sperm Heat Stress on Embryo Development in Cattle

  • Hur, C-G;Cho, S-R;Chong, J-R;Lee, J-G;Lee, H-J;Park, C-S;Choe, S-Y
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.40-40
    • /
    • 2001
  • Heat stress to bovine oocytes and embryos has suggested a potential role of retardation of their development. Limited study has reported on the effect of heat shock on sperm before using it for IVF. Caudal epididymal sperm cultured in 42$^{\circ}C$ incubator for 0.5, 1 and 2 h compared on sperm viability and oocyte development after its use for IVF to those of control. Oocytes were matured for 22 h and then inseminated with treated or control sperm for 16 h. Embryos were cultured in CRlaa medium, transferred to TCM199+10% FBS on day 4, and maintained on day 9. A higher proportion (84.1%, 0.5 h; 72%, 1 h: 65%, 2 h) in treated sperm was observed dead and abnormal pattern as 100% of consider as control. In control the rates of cleavage and development into blastocyst were 76% and 22%, respectively, and did not differ the rates between 1 h and 2 h of culture. Significant differences were appeared in the rates between treated for an hour and control (32% and 5% vs. 54% and 10%, respectively). Moreover increased time of culture is more retardation to be cleaved the oocytes. However, the rates of blastocyst from cleaved embryos in treated group similar to control (25% vs. 29%, respectively). The reason for this remains unclear, but male sperm, from preliminary experiment(data un-shown) for sexing of resulting embryos, would be more fragility on heat stress.

  • PDF

Thermodynamic Analysis of Vapor Explosion Phenomena (증기폭발 현상의 열역학적 해석)

  • Bang, Kwang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.265-275
    • /
    • 1993
  • A vapor explosion has been a concern in nuclear reactor safety due to its potential for a destructive mechanical energy release. In order to properly assess the hazard of a vapor explosion, it is necessary to accurately estimate the conversion efficiency of the thermal energy to mechanical energy. In the absence of a complete model to determine the explosive energy yield, one may have to rely on a simpler upper bound estimate such as a thermodynamic model. This paper discusses various thermodynamic models and presents a clarification of each model in their mathematical formulation and the thermodynamic work conversion. It is shown that the work release in the shock adiabatic model of Board and Hall is essentially equal to that of Hicks-Menzies thermodynamic model. The effect of coolant void fraction on the explosion efficiency is also predicted based on these thermodynamic models. Finally, the Hicks-Menzies model is modified to account for the chemical reaction between a metallic fuel and water and the resultant effects on the explosion expansion work are discussed.

  • PDF

Synthesis of Gold Nanoparticles by Electro-reduction Method and Their Application as an Electro-hyperthermia System

  • Yoon, Young Il;Kim, Kwang-Soo;Kwon, Yong-Soo;Cho, Hee-Sang;Lee, Hak Jong;Yoon, Chang-Jin;Yoon, Tae-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1806-1808
    • /
    • 2014
  • We report the successful preparation of gold nanoparticles (Au NPs) using a novel electroreduction process, which is simple, fast, and environmentally friendly (toxic chemicals such as strong reducing agents are not required). Our process allows for the mass production of Au NPs and adequate particle size control. The Au NPs prepared show high biocompatibility and are non-toxic to healthy human cells. By applying radio-frequency (RF) ablation, we monitored the electro-hyperthermia effect of the Au NPs at different RFs. The Au NPs exhibit a fast increase in temperature to $55^{\circ}C$ within 5 min during the application of an RF of 13 MHz. This temperature rise is sufficient to promote apoptosis through thermal stress. Our work suggests that the selective Au NP-mediated electro-hyperthermia therapy for tumor cells under an RF of 13 MHz has great potential as a clinical treatment for specific tumor ablation.

A Tubulin Inhibitor, N-(5-Benzyl-1,3-thiazol-2-yl)-3-(furan-2-yl)prop-2-enamide, Induces Anti-inflammatory Innate Immune Responses to Attenuate LPS-mediated Septic Shock

  • Park, Hyun Jung;Lee, Sung Won;Park, Hwangseo;Park, Se-Ho;Hong, Seokmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3307-3312
    • /
    • 2014
  • The anti-inflammatory effect of a tubulin inhibitor, N-(5-benzyl-1,3-thiazol-2-yl)-3-(furan-2-yl)prop-2-enamide (1), on innate immune responses remains unclear. Thus, we investigated the effect of 1 on the immune responses mediated by lipopolysaccharide (LPS). The in vitro addition of 1 to dendritic cells and macrophages dose-dependently reduced tumor necrosis factor alpha production elicited by LPS stimulation. Additionally, the stimulation of natural killer (NK) and natural killer T (NKT) cells with 1 resulted in the decrease of interferon gamma ($IFN{\gamma}$) induced by LPS treatment. Moreover, 1 substantially reduced interleukin 12 in dendritic cells (DC) as well as $IFN{\gamma}$ in NKDCs induced by LPS in vitro. Furthermore, the in vivo administration of 1 ameliorated LPS/D-galactosamine-induced endotoxic lethality in mice. Taken together, our results demonstrate for the first time that 1 possesses anti-inflammatory properties, most notably by modulating LPS-induced innate immune responses. Therefore, 1 might have therapeutic potential for the treatment of inflammation-mediated diseases such as sepsis.

A Comparative Experiment on Thermal Stress Failure of Vacuum Glazing applied in Curtain Wall at Spandrel area (커튼월 스팬드럴용 진공유리의 열파손에 대한 비교실험)

  • Kim, Seung-Chul;Yoon, Jong-Ho;Shin, U-Cheol;Ahn, Jung-Hyuk
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.121-128
    • /
    • 2016
  • Purpose: The vacuum glazing should constantly retain the gap in vacuum state to maintain high thermal performance. To do so, pillars are used to prevent the glazing from clinging to each other by the atmospheric pressure and therefore surface of the vacuum glazing is consistently affected by residual stress. The vacuum glazing could be applied to curtain wall systems at spandrel area to fulfill a rigorous domestic standard on U-value of the external wall. However, this can lead to high glazing temperature increase by heat concentration at a back panel and finally thermal stress breakage. This study experimentally determined weakness of the vacuum glazing systems on the thermal stress breakage and investigated effect of the residual stress. Method: The experiment first built two scale-down mock-up facilities that replicate the spandrel area in curtain wall, and then installed single low-e glass and vacuum glazing respectively. The two mock-up facilities were exposed to outside to induce the thermal stress breakage. Result: The experiment showed that the temperature occurred the thermal stress breakage was $114.4^{\circ}C$ for the single low-e glass and $118.9^{\circ}C$ for the vacuum glazing respectively. The result also showed the vacuum glazing reached the critical point earlier than the single low-e glass, which means that the vacuum glazing has high potential to occur the thermal shock breakage. In addition, the small temperature difference between two glazing indicates that the residual stress scarcely affects breakage of the vacuum glazing.

OsDOR1, a novel glycine rich protein that regulates rice seed dormancy

  • Kim, Suyeon;Huh, Sun Mi;Han, Hay Ju;Cho, Mi Hyun;Lee, Gang Sub;Kim, Beom Gi;Kwon, Taek Yun;Yoon, In Sun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.90-90
    • /
    • 2017
  • Regulation of seed dormancy is important in many grains to prevent pre-harvest sprouting. To identify and understand the gene related to seed dormancy regulation, we have screened for viviparous phenotypes of rice mutant lines generated by insertion of Ds transposon in a Korean Japonica cultivar (Dongjin) background. One of the mutants, which represented viviparous phenotype, was selected for further seed dormancy regulation studies and designated dor1. The dor1 mutant has single Ds insertion in the second exon of OsDor1 gene encoding glycine-rich protein. The seeds of dor1 mutant showed a higher germination potential and reduced abscisic acid (ABA) sensitivity compared to wild type Dongjin. Over-expression of Dor1 complements the viviparous phenotype of dor1 mutant, indicating that Dor1 function in seed dormancy regulation. Subcellular localization assay of Dor1-GFP fusion protein revealed that the OsDor1 protein mainly localized to membrane and the localization of OsDOR1 was influenced by presence of a giberelin (GA) receptor OsGID1. Further bimolecular fluorescence complementation (BiFC) analysis indicated that OsDOR1 interact with OsGID1. The combined results suggested that OsDOR1 regulates seed dormancy by interacting with OsGID1 in GA response. Additionally, expression of OsDOR1 partially complemented the cold sensitivity of Escherichia coli BX04 mutant lacking four cold shock proteins, indicating that OsDOR1 possessed RNA chaperone activity.

  • PDF

Terpene-Strengthened Ginkgo biloba Extract as a Platelet-Activating Factor Antagonist

  • Quan, Zhe-Jiu;Moon, Tae-Chul;Yang, Ju-Hye;Chang, Hyeun-Wook;Park, Young-Hyun;Kim, Young-Ha;Lee, Kyung-Hee;Chi, Yeon-Sook;Lim, Hyun;Kim, Hyoung-Chun;Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.160-165
    • /
    • 2006
  • Since platelet-activating factor (PAF) is involved in inflammation, allergic response and anaphylactic shock, PAF receptor antagonists may have potential for controlling these disease conditions. The extract of the leaves of Ginkgo biloba having a higher content of terpenoids (12%) with flavonoids (24%) (YY1224) was prepared in order to obtain the increasing PAF antagonistic activity. As expected, YY1224 showed a higher PAF antagonistic binding affinity ($IC_{50}\;=\;0.09\;{\mu}g/ml$) using $[^3H]PAF$ and rabbit platelets as ligand and receptor source, compared with an $IC_{50}$ of $>\;100\;{\mu}g/ml$ by Egb 761, a standardized extract. YY1224 also showed a higher inhibitory activity against PAF-induced platelet aggregation and NO production from lipopolysaccharide-treated RAW 264.7 cells. In addition, it protected PAF-induced death in mice by oral administration at 15 mg/kg. All these results suggest that YY1224 may show favorable effects on PAF-related disorders.