• Title/Summary/Keyword: Potato virus X

Search Result 50, Processing Time 0.029 seconds

재단법인 목암생명공학연구소 - 연구소 탐방

  • 문흥모
    • The Microorganisms and Industry
    • /
    • v.17 no.3
    • /
    • pp.86-88
    • /
    • 1991
  • 한국의 중부지역을 중심한 11개 지역으로부터 수집한 자료를 재료로 하여 감자바이러스를 분석한 결과 potato virus X, potato virus Y, potato virus S의 3종류의 감자바이러스 계통이 우리나라에 분포하고 있음을 알았다. 이들의 민합감심 비율은 81%를 나타냈으며 강원도 지방이 가장 적었다. 기중 pvx의 제성질을 조사한 결과 dilution end point는 $10^{-6}$ , thermal inactivation point는 7$0^{\circ}C$를 나타냈다. 입자의 크기는 550~650ml사이였다. 기중 600ml이 80%를 갖는 PVX계통이였다.

  • PDF

Plant RNA Virus-Host Interaction: Potato virus X as a model system

  • Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.14-14
    • /
    • 2003
  • Potato virus X (PVX), the type member of Potexvirus genus, is a flexuous rod-shaped virus containing a single-stranded (+) RNA. Infection by PVX produces genomic plus- and minus-strand RNAs and two major subgenomic RNAs (sgRNAs). To understand the mechanism for PVX replication, we are studying the cis- and/or trans-acting elements required for RNA replication. Previous studies have shown that the conserved sequences located upstream of two major sgRNAs, as well as elements in the 5' non-translated region (NTR) affect accumulation of genomic and sg RNAs. Complementarity between sequences at the 5' NTR and those located upstream of two major sgRNAs and the binding of host protein(s) to the 5' NTR have shown to be important for PVX RNA replication. The 5 NTR of PVX contains single-stranded AC-rich sequence and stem-loop structure. The potential role(s) of these cis-elements on virus replication, assembly, and their interaction with viral and host protein(s) during virus infection will be discussed based on the data obtained by in vitro binding, in vitro assembly, gel shift mobility assay, host gene expression profiling using various mutants at these regions.

  • PDF

Studies on Purification and Serology of Potato Virus X (감자바이러스 X의 순화와 혈청학적 연구)

  • Lee Soon Hyung;Lee Key Woon;Chung Bong Jo
    • Korean journal of applied entomology
    • /
    • v.16 no.2 s.31
    • /
    • pp.101-104
    • /
    • 1977
  • Potato virus X was purified especially for the preparation of antisera for diagnosis and identification. Potato virus X was isolated Iron infected plants by means of indicator plants and identified in electron microscopy. Isolated PVX was multiplied in tomato plants and purified by a modified procedures. The purity of PVX was 0.59mg/m1. Purified PVX was injected into rabbits once a week for 5 weeks. Antiserum was collected 10 days after the last injection. Produced antiserum was determined 1/1024 titers by means of microprecipitin tests and showed sharp reactions in agar gel-diffusion tests.

  • PDF

Characterization and Partial Nucleotide Sequence of Potato Virus X Isolated from Potato in Korea

  • Jung, Hyo-Won;Yun, Wan-Soo;Seo, Hyo-Won;Hahm, Young-Il;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.110-117
    • /
    • 2000
  • Potato virus X (PVX-KO) showing mild mosaic and stunting symptoms on potato (Solanum tuberosum) in Kangwon area has been isolated and characterized. EM observation of the purified virus particles showed flexuous rod shape of about 520 nm in length. The coat protein (CP) of the virus had a molecular weight of 31 kDa in SDS-PAGE analysis, and the viral RNA was approximately 6.4 kb in size in denatured agarose gel electro-phoresis. In gel-immunodiffusion tests, it reacted strongly with an antiserum to common PVX from BIOREABAAG (USA). A rabbit antiserum was produced using purified virus and used for routine PVX detection by ELISA. Cultivated potatoes in Kangwon and other areas were frequently infected with PVX-KO. Both Datura stramonium and Nicotiana tabaccum cultivars developed necrotic local lesions 5 days after inoculation, and systemic mosaic symptoms with vein clearing 2 weeks after inoculation. All the features agree with the description of other PVX strains. To confirm and determine PVX strains, reverse transcription-polymerase chain reaction experiment was conducted using specific primers for viral CP. Amplified DNA fragments were cloned and sequenced. Results showed nucleotide sequence homologies of about 88 to 99% to other PVX strains. Based on CP amino acid sequence deduced from nucleotide sequences and host range studies PVX-KO is considered a member of the type X subgroup of PVX.

  • PDF

Bacillus vallismortis Strain EXTN-1 Mediated Systemic Resistance against Potato virus Y and X in the Field

  • Park, Kyung-Seok;Paul, Diby;Ryu, Kyung-Ryl;Kim, Eun-Yung;Kim, Yong-Ki
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.360-363
    • /
    • 2006
  • Efficacy of plant growth promoting rhizobacteria(PGPR) Bacillus vallismortis strain EXTN-1 has been proved in eliciting induced systemic resistance(ISR) in several crops. The present paper described the beneficial effects of EXTN-1 in potato as increase in yield and chlorophyll content, and plant protection against Potato Virus Y and X(PVY & PVX). EXTN-1 induced systemic resistance to the plants resulting in significant disease suppression in the field. Also the plants under treatment with EXTN-1 had higher chlorophyll content. The bacterized plants had significantly higher yields over the untreated control plants. The strain induced activation of defense genes, PR-1a and PDF 1.2 in transgenic tobacco model, which indicated the possible role of both SA, and JA pathways in EXTN-1 mediated plant protection against crop diseases.

Serological Investigation of Virus Diseases of Tobacco Plant (Nicotiana tabaccum L.) In Korea (혈청학적 방법에 의한 잎담배 바이러스병의 감염상 조사)

  • Park Eun Kyung;La Yong Joon;Heu Il;Lee Yong Deuk
    • Korean journal of applied entomology
    • /
    • v.14 no.2 s.23
    • /
    • pp.59-63
    • /
    • 1975
  • A total of 40 virus infected tobacco plants (Nicotiana tabaccum L.) with various symptom types Were collected from Bucheon and Jeonju area by its symptoms were investigated on the incidence of tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), alfalfa mosaic virus (AMV), potato virus X (PVX) and potato virus Y (PVY) by serological methods. van Slogteren's microprecipitin test was applied for the testing of PVX and PVY from infected plants and Ouchterlony agar double diffusion test was used for CMV, TMV and AMV. Results obtained are as follows: 1. TMV, CMV, AMV, PVX and PVY wcre found to occur on the tobacco plants growing in Korea. 2. The prevalence of each of these viruses among the 40 tobacco plants investigated was in the order of AMV: $(67.5\%)>CMV:(60.0\%)>TMY:(47.5\%)>PVY:(17.5\%)>PVX: (10.0\%).$ 3. In Burley variety, the percentage of infection by TMV was $15\%$, whereas it was as high as $80\%$ in Hicks variety. 4. Among the 40 tobacco plants investigated, $37.5\%$ showed infection with one kind of virus whereas the remaining $62.5\%$, revealed mixed infection with more than two different viruses.

  • PDF

Potato Pests Observed in Seed Potatoes, North Korea during 2001 to 2005 (북한 씨감자 생산에서의 병해충 발생(2001-2005))

  • Hahm Young-Il
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • During visiting North Korea from 2001 to 2005, I have had a few chances to observe and discuss several North Korean scientists for the seed production program and also, the occurrence of potato pests. Healthy seed production, especially in the early generations, e.g. the production of virus-free starting materials as well as in vitro pre-basic seeds (G0) by hydroponics and basic seeds under netted houses according to her new national seed potato program of Academy of Agricultural Science, Pyongyang, North Korea, has been done well so far. Some major pests occurred, however, in the early generations such as pre-basic seed (G0) in greenhouse, basic seed (G1) in screenhouse, foundation seed-I (G2) and even ware potatoes in the fields are Phytopitthora infestans, Spongospora subterrunea, Ralstonia solanacearum, Pythium spp. and some viruses such as Potato virus X, Potato virus Y, Potato leafroll virus, and also larger potato ladybeetle, greenhouse whitefly and potato tuber moth. Therefore, the success of healthy seed production in North Korea will be thoroughly depended on the pest control and the multiplication of virus-free seed stocks in the isolated areas, especially where no infected potatoes are grown.

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.