• Title/Summary/Keyword: Potassium deficiency

Search Result 45, Processing Time 0.035 seconds

A study on potassium deficiency symptoms of flue-cured tobacco. (Interrelationship of nitrogen and potassium contents in leaves of stalk position applied with fertilizer levels) (황색종잎담배의 칼륨결핍증에 관한 연구 (시비수준에 따른 엽위 및 엽부위별 질소와 칼륨함량의 상호관계))

  • 홍순달;이윤환;김재정
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.4 no.1
    • /
    • pp.29-35
    • /
    • 1982
  • Potassium deficiency symptoms were studied with flue-cured tobacco which was applied with different levels of compound fertilizer (10-15-20) ; 75kg, 100hg, and 125kg/10a. Ratio of N/$K_2O$ in leaves was increased from bottom to top stalk position due to the increase of nitrogen content in leaves. Nitrogen content in leaves was increased from stalk to tip as wall as from midrib to laminae, but vice versa in potassium content. Consequently, resulting in potassium deficiency symptoms in tip of leaves. Rate of reabsorption by rainfall during the latter part of growth was highest at top stalk position in case of nitrogen, but lowest in potassium. This observation was more evident with higher application rate of fertilizer. Nitrogen content of about 4 % in leaves of top stalk position applied with 125kg/10a was maintained up to 85days after trans planting. No increase in potassium in upper leaves was observed over the level of 100kg/10a fertilizer application. As the result, N/$K_2O$ ratio in leaves of top stalk position applied with 125kg/10a was kept at more than 1.0 up to 85days after transplanting, but it was less than 0.9 at 65days after tracts planting with less than 100kg/10a fertilizer application.

  • PDF

Studies on the Nutritional Physiology of Soybean 6. Variatio of Potassium at the Various Position of Leaf on the Main Stem (대두의 영양생리학적 연구 6. 엽위별 가리의 변이)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.17 no.3
    • /
    • pp.127-136
    • /
    • 1974
  • The effect of potassium metabolism on the soybean leaves was studied with comparison of other elements during the successive growing period. The results were as follows; 1. The percentage of potassium content showed remarkable increase not only in the first compound leaf at a stage which was growing vigorously and producing new leaves, but also in the fifth compound leaf at a stage which was taking a active metabolism of nitrogen and carbohydrate but not producing new leaves. However, the percentage of potassium content was decreased in the second compound leaf than in the first one. Such a result could be regarded as a potassium removal from mature leaves into immature and flowing out from stoma through respiration. During the pod-development the percentage of potassium content in the soybean leaf was decreased. 2. If nitrogen, phosphorus and potassium were added excessively in the nutrient solution, the percentage of potassium content in the soybean leaf had increased. The effects of these elements showed a remakable increase in the excessive plot of nitrogen than in that of phosphorus. At early stage the redtarded effect of phosphorus on the growth of soybean could be covered by potassium, however, at late stage it could not. The growth of soybean plant was much more inhibited by potassium, compared with nitrogen and phosphorus. New leaves could not be produced in the potassium deficient soybean plant after the third compound leaf. The normal growth of soybean plant could not be observed if only one element was excessively added to the culture solution, compared with the deficiency of other two elements.

  • PDF

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) as Influenced by Potassium Concentrations in the Fertigation Solution (칼륨 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2007
  • This study was carried out to investigate the effect of potassium concentrations in fertigation solution on growth and development of nutrient deficiency symptoms of leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Potassium deficiency symptoms developed in older leaves with marginal necrosis. The brown areas on the lower leaves enlarged rapidly and the margins became scorched. Elevation of K concentrations in the fertigation solution up to 8 mM increased the crop growth in leaf length, stem thickness, and fresh and dry matter production of above ground plant tissue. However, that decreased the chlorophyll contents. The 8.0 mM K treatment which showed the greatest growth had 5.01 g in dry weight and 2.76% in K content of above ground plant tissue, suggesting that maintaining K content higher than 1.7% is necessary for good growth of Perilla frutesens. The K concentrations in petiole sap and soil solution of 8.0 mM treatment were $12,289mg{\cdot}kg^{-1}\;and\;11.65mg{\cdot}L^{-1}$, respectively. These indicated that K fertilization to maintain higher than $8,700mg{\cdot}kg^{-1}$ in petiole sap and $4.5mg{\cdot}L^{-1}$ in soil solution are necessary to ensure good crop growth.

The Effect of Nitrogen, Phosphorus and Potassium on the Differentiation of Soybean young Leaf (대두치엽의 분화에 미치는 질소 인산 가리의 영향)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.14 no.2
    • /
    • pp.15-21
    • /
    • 1971
  • The present paper was designed to investigate the effect of nitrogen, phosphorus and potassium on the histological differentiation of the young leaves of soybean (Glycinemax, M.). Observations were made on the numbers of lamina cells and lateral veins, width and thickeness of the lamina and vascularization of the midrib in the 5th leaf, and the differentiation of leaves at 42$\mu$ from the apical tips of the shoot apecis. Samples were taken at the time when the 2nd leaf was completed. The experimental plots were divided into twelve parts. And the results obtained are as follows. 1) Nitrogen stimulated the differentiation of the leaf, the vascuralization of the midrib and increased the numbers of lamina cells and lateral veins. 2) Phosphorus promoted the differentiation of lamina at the first stage of soybean growth. It was more effective in the plots of excessive application than otherwise. It had a small effect on the differentiation of lateral veins. 3) Among the elements, a deficiency of postassium resulted in a reduced differentiation of the lamina potassium had no effect on the thickening growth of the lamina and the differentiation of the midrib. 4) It appeared that phosphorus might compensate for the negative effect of potassium in the potassium and phosphorus plots.

  • PDF

A STUDY ON POTASSIUM DEFICIENCY SYMPTOMS OF FLUE-CURED TOBACCO. (INTERRELATIONSHIP OF NITROGEN AND POTASSIUM CONTENT IN DIFFERENT POSITION OF VEGETATIVE ORGAN APPLIED WITH DIFFERENT LEVELS OF NITROGEN AND POTASSIUM FERTILIZER) (황색종 잎담배의 칼륨결핍증에 관한 연구 (질소 및 칼륨시비수준에 따른 연초기관부위별 질소와 칼륨함량의 상호관계))

  • Hong, Soon-Dal;Lee, Yun-Hwan;Kim, Jai-Joung
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.6 no.2
    • /
    • pp.199-296
    • /
    • 1984
  • Symptoms of potassium deficiency were studied with flue-cured tobacco (N.C 2326) which had been applied with several levels of nitrogen and potassium fertilizer at 7, 10, and 13 Kg N/10a, and 15, 20, and $25KgK_2O/10a$, respectively. The distributions of T-N, $NH_4-N, \;NO_3-N$, and K contents in 18 leaves from the bottom to the top stalk position were investigated at 63 days after transplanting. The T-N content in the different stalk positions was increased from the bottom to the top ; however, vice versa in K content. As increasing the application levels, the increasing rate of the T-N content in the different leaf fractions were similar to those of rib and laminae. On the contrary, the rates of K content in the rib were higher then that of laminae and in the bottom than the top stalk position. Those indicated that the unbalance of nitrogen and potassium contents in the leaves came to maximum in the laminae of the top stalk position and was possibly affected by the application level of nitrogen rather than potassium. The T-N content in the laminae was higher than that of the rib. However the K and $NO_3$-N contents in the laminae were significantly lower than those of the rib. Therefore the $K^+$ uptake by tobacco was thought to be accompanied with $NO_3$- and transported smoothly up to the rib, but not from the rib to the laminae where assimilation materials were accumulated. Distribution of inorganic components in the different positions of vegetative organ were also investigated at 60 days after transplanting. The T-N and $P_2O_5$ contents were in order as; top > middle> bottom of the stalk and the stalk position, and laminae > vein > midrib of leaf fraction, however vice versa in K content of the stalk position and leaf fraction. In addition distributions of CaO and MgO contents in the each leaf fraction were resemble to that of the T-N content. On the contrary, the distributions of the CaO and MgO contents in the different stalk positions were similar to that of the K content.

  • PDF

Zinc Deficiency Elevates Fecal Protein, But Not Electrolyte and Short-Chain Fatty Acid, Levels in Enterotoxigenic Escherichia coli-Induced Diarrhea in Rats

  • David, Ebuka E.;Yameen, Muhammad A.;Igwenyi, Ikechuku O.;David, Chidinma N.;Nwobodo, Valentine;Ismail, Akindele K.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2022
  • Purpose: To determine the effect of zinc deficiency on fecal protein, electrolyte, and short-chain fatty acid levels in both heat-stable (ST) and heat-labile (LT) enterotoxigenic Escherichia coli (ETEC)-induced diarrhea in rats. Methods: Albino rats, weighing 100 to 150 g, were divided into 2 groups, with 15 animals each: non-zinc and zinc-deficient. These two groups were sub-divided into three sub-groups with five rats each: control (saline); LT-ETEC; and ST-ETEC. Sodium phytate (30 mmol/L) was added to the animals' water to induce zinc deficiency, while diarrhea was induced using 5×109 ETEC cells/mL. Fecal protein levels were estimated using the Bradford method, while sodium and potassium levels were determined using atomic absorption spectrophotometry. Short-chain fatty acids were measured using gas chromatography-mass spectrometry. Results: Among the non-zinc and zinc-deficient groups, there were significant increases (p=0.04), (p=0.03) in fecal protein concentrations (mg/mL) in the LT-ETEC- (4.50±0.33), (6.50±0.26) and ST-ETEC- (3.85±0.19), (5.98±0.32) induced groups compared to the control groups (2.60±0.52), (3.50±0.11) respectively. Fecal sodium and potassium levels (mg/L) were significantly (p=0.029) increased in non-zinc-deficient rats induced with LT-ETEC (9.35±0.95, 1.05±0.48), and ST-ETEC (9.96±1.02, 1.21±0.45) compared with the control group (8.07±0.44, 0.47±0.17) but the increase were not statistically significant (p=0.059) in the zinc deficient rat groups. Fecal acetate and propionate levels (mg/g) significantly (p=0.032) increased when induced with LT-ETEC and ST-ETEC in non-zinc and zinc-deficient groups compared with the control groups. Conclusion: Zinc deficiency among rats with ETEC-induced diarrhea elevated fecal protein loss but may not have an effect on fecal sodium, potassium and short-chain fatty acid levels.

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Disorders of Potassium Metabolism (칼륨 대사 장애)

  • Lee, Joo-Hoon
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.132-142
    • /
    • 2010
  • Hypokalemia usually reflects total body potassium deficiency, but less commonly results from transcellular potassium redistribution with normal body potassium stores. The differential diagnosis of hypokalemia includes pseudohypokalemia, cellular potassium redistribution, inadequate potassium intake, excessive cutaneous or gastrointestinal potassium loss, and renal potassium wasting. To discriminate excessive renal from extrarenal potassium losses as a cause for hypokalemia, urine potassium concentration or TTKG should be measured. Decreased values are indicative of extrarenal losses or inadequate intake. In contrast, excessive renal potassium losses are expected with increased values. Renal potassium wasting with normal or low blood pressure suggests hypokalemia associated with acidosis, vomiting, tubular disorders or increased renal potassium secretion. In hypokalemia associated with hypertension, plasam renin and aldosterone should be measured to differentiated among hyperreninemic hyperaldosteronism, primary hyperaldosteronism, and mineralocorticoid excess other than aldosterone or target organ activation. Hypokalemia may manifest as weakness, seizure, myalgia, rhabdomyolysis, constipation, ileus, arrhythmia, paresthesias, etc. Therapy for hypokalemia consists of treatment of underlying disease and potassium supplementation. The evaluation of hyperkalemia is also a multistep process. The differential diagnosis of hyperkalemia includes pseudohypokalemia, redistribution, and true hyperkalemia. True hyperkalemia associated with decreased glomerular filtration rate is associated with renal failure or increased body potassium contents. When glomerular filtration rate is above 15 mL/min/$1.73m^2$, plasma renin and aldosterone must be measured to differentiate hyporeninemic hypoaldosteronism, primary aldosteronism, disturbance of aldosterone action or target organ dysfunction. Hyperkalemia can cause arrhythmia, paresthesias, fatigue, etc. Therapy for hyperkalemia consists of administration of calcium gluconate, insulin, beta2 agonist, bicarbonate, furosemide, resin and dialysis. Potassium intake must be restricted and associated drugs should be withdrawn.

Effects of Potassium Deficiency on C and N Metabolism during Regrowth of Italian Ryegrass (Lolium multiflorum L.) (칼륨 결핍이 이탈리안 라이그라스 재생기간동안의 탄소와 절소의 대사에 미치는 영향)

  • 정우진;이복례;김대현;김길용;김태환
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2001
  • To investigate C and N metabolisms in response to potassium-deficient stress during regrowth of Italian ryegrass(Lolium multiflorum L.), C and N metabolites were analyzed at day 0 (cutting date), 6, 12 and 24 days after defoliation. K-sufficient (control, +K) and K-absent (-K) nutrition solutions were applied from 7 days before defoliation, and continued for one cycle of 24 days-regrowth period. During 24 days of regrowth dry matter of regrowing shoots and remaining tissues were not significantly different between +K and -K treatment. In remaining stubble, all C compounds in both +K and -K treatment largely decreased (69% to 84% of the initial level) during the first 6 days of regrowth, and then rapidly recovered. The decline of soluble sugars and fructan in roots for the first 6 days much less in the -K medium. Amino acids, soluble and insoluble proteins in stubble also feel down during the first 6 days, thereafter actively replenished in both +K and -K treatment. The decline of nitrate in stubble prolonged to 12 days of regrowth. Initial amounts of all N compounds in roots were significantly lower in the -K medium. Higher accumulation of amino acids and soluble protein in roots in the -K medium was observed after 12 days of regrowth. In regrowing shoots, 3 all carbohydrates increased with a very similar pattern for both treatments. Nitrate was not significantly different between two treatments. Depress of soluble protein accumulation in -K medium was noteworthy after 12 days of regrowth. These results indicated that an active utilization of organic reserves occurred to support regrowth even under K deficient condition with a similar extent with K sufficient condition.

  • PDF

Effect of Potassium on Rice Plant Growth on an Akiochi Soil (추락답토양(秋落沓土壤)에 생육(生育)한 수도(水稻)에 대(對)한 가리(加里)의 효과)

  • Park, Y.D.;Kim, Y.S.;Park, C.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 1970
  • In application of manganese and silica to Akiochi soil, growth of rice plant with potassium was remarkably increased, but the growth without potassium was stunted and the number of the tiller was relatively reduced in comparison with that receiving potassium. The minus potassium plant developed tiny brown spots on the leaves and color of the leaves was dark green. They had smaller leaves and shorter stem while heading advanced. Roots with potassium were long and thick, and new ones developed, while roots without K were very poor, the branch and hair roots very thin, and severe root rot was observed. With minus potassium treatment, the root rot of Jin Heung(commercial variety) was more severe than Nonglim 6(Akiochi resistant). Growth of plant without potassium was very poor, and potassium content of the plant was very low, while nitrogen, phosphorus, silica, iron and manganese contents were higher than potassium supplied plant. Application of $Mn+SiO_2$ to Akiochi soil lowered iron content of plant, and iron content of the plant were also reduced by application of potassium. From the results obtained it can be concluded that root damage of minus potassium plant grown in Akiochi soil supplied $Mn+SiO_2$ was caused by potassium deficiency. Potassium, and $Mn+SiO_2$ applications lowered iron content in the plant grown on Akiochi soil.

  • PDF