• 제목/요약/키워드: Potassium Sulfate

검색결과 209건 처리시간 0.031초

THE EFFECTS OF CRYSTAL GROWTH ON SHEAR BOND STRENGTH OF ORTHODONTIC BRACKET ADHESIVES TO ENAMEL SURFACE (Crystal growth에 의한 법랑질 표면처리가 교정용 브라켓 접착제의 전단결합강도에 미치는 영향)

  • Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • 제27권5호
    • /
    • pp.839-852
    • /
    • 1997
  • It has been submitted that different ion solutions containing sulfate induce crystal growth and might substitute conventional acid etching for pretreatment of enamel in orthodontic bonding(${\AA}rtun$ et al., Am. J. Orthod. 85, 333, 1984). This investigation was designed to evaluate the relevance of crystal growth on the enamel surface as an alternative to conventional acid etching in direct bonding of orthodontic brackets. Annexing Li2SO4, MgSO4, K2SO4 respectively in the solution with $25\%$ polyacrylic md 0.3M sulfuric acids were employed to enhance the crystal growth. Human bicuspids were treated with various parameters as combinations of crystal growth and glass ionomer cement, crystal growth and orthodontic resin, acid etching and orthodontic resin for an investigative purpose. Crystal growth solution containing MgSO4 showed the highest shear bond strength(15.6MPa) within the groups of bonding brackets with glass ionomer cement(p<0.01). Bonding with glass ionomer cement on the surface of crystal growth demonstrated higher shear bond strength than with orthodontic resin(p<0.001). Bonding with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 was not different shear bond strength statistically from bonding with orthodontic resin on the acid-etched surface. It suggests that bonding brackets with glass ionomer cement on the surface treated with crystal growth solution containing MgSO4 or K2SO4 is a potential alternative to bonding with resin on the acid etched sufrace.

  • PDF

PHB Accumulation Stimulated by Ammonium Ions in Potassium-limited Cultures of Methylobacterium organophilum

  • Kim, Seon-Won;Kim, Pil;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권4호
    • /
    • pp.301-304
    • /
    • 1998
  • Methylobacterium organophilum can use nitrogen in the form of ammonium ions ($($NH_4$)_2SO_4\;and\;NH_4Cl) and from nonammonium sources such as glycine, alanine, peptone, and yeast extract. When potassium was limited, significantly more PHB was produced when the ammonium ion was the nitrogen source rather than a nonammonium form. With ammonium, the amount of PHB produced was 0.50-0.53 g PHB/l or $52.0~53.2\%$ of the dry cell weight. If nitrogen was from a nonammonium source, the respective values were 0.04~0.06 g PHB/1 or $8.1~11.3\%$ of dry cell weight. When ammonium sulfate was the sole source of nitrogen under potassium-limited conditions, cell growth and PHB accumulation increased as the pH increased from 6.0 to 7.5. Cell growth and PHB amount at pH 7.5 were 2.50 g dry cell weight/1 and 1.40 g PHB/1, respectively.

  • PDF

Effects of Spray Methods and Ammonium Sulfate and Potassium Chloride on Enhancing Phytotoxicity of Glyphosate (제초제(除草劑)의 살초효과(殺草效果) 증진(增進)을 위한 살포방법(撒布方法)과 황산암모늄 및 염화칼리의 첨가처리효과(添加處理效果))

  • Pyon, Jong-Yeong;Kim, Young-Rae
    • Korean Journal of Weed Science
    • /
    • 제3권2호
    • /
    • pp.190-198
    • /
    • 1983
  • To examine the possibility of enhancing activity of foliar applied herbicides by spray methods and additives, field experiments were conducted to evaluate the effects of surfactant, spray volume, and additions of ammonium sulfate or potassium chloride to glyphosate on toxicity to Digitaria sanguinalis or Artemisia princeps. Glyphosate toxicity increased as spray volume was decreased from 120 1/10a to 40 and 80 1/10a. Additions of surfactant in the spray solution increased toxicity of glyphosate to D. sanguinalis and usually more pronounced effect was obtained at glyphosate 30.5g a.i./10a. Additions of 1 and 5% (w/v) ammonium sulfate to glyphosate increased toxicity to A. princeps at glyphosate 30.5 and 61.5g a.i./10a. 10% ammonium slufate, however, had no effect or were antagonistic. Additions of potassium chloride at 1,2 and 3% (w/v) were also very effective to increase herbicidal activity to A. princeps at glyphosate at 30.5 and 61.0g a.i/10a. These results suggest that the practices for enhancement of herbicidal activity by improvement of spray method and additions of ammonium sulfate or potassium chloride to glyphosate can be employed to use lower herbicide levels while giving the same degree of weed control in orchards and non-crop lands.

  • PDF

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Changes in BOD, COD, Chlorophyll-a and Solids in Aquaculture Effluent with Various Chemical Treatments

  • Park, Jeonghwan;Daniels, Harry V.
    • Journal of Marine Life Science
    • /
    • 제2권2호
    • /
    • pp.49-55
    • /
    • 2017
  • Four chemical treatments with hydrogen peroxide (H2O2), copper sulfate (CuSO4), potassium permanganate (KMnO4) and chlorine (Cl2) were applied to the effluent pond water of a hybrid striped bass saltwater recirculating aquaculture system to compare their oxidation power. Four chemicals were applied at concentrations of 0 (control), 1, 5, 10 and 20 mg/l. An additional concentration of 40 mg/l was included in the chlorine treatment. Water samples from four hybrid striped bass ponds were tested with KMnO4 and Cl2. H2O2 did not reduce any of BOD, COD and chlorophyll-a, and copper sulfate was only effective on chlorophyll-a for the effluent pond. Removal efficiencies for chlorophyll-a by copper sulfate were 19.2%, 37.5%, 54.2% and 74.1% dose-dependently. Potassium permanganate effectively removed the BOD, COD and chlorophyll-a. The COD removal rates in four fish ponds varied from 15.9% to 31.6% at the concentration of 10 mg/l. Interestingly, Cl2 did not reduce the BOD and COD at all, but the BOD and COD instead increased drastically with increasing the Cl2 concentration. The pond water with the highest initial BOD and COD values among the fish ponds tested increased by 350% in the BOD and 150% in the COD at 20 mg/l. Furthermore, Cl2 did not significantly reduce any types of solid matter in this study, while KMnO4 seemed to reduce some extent volatile dissolved solid in the fish pond.

Flocculation Characteristics of Microalgae Using Chemical Flocculants (화학응집제를 이용한 미세조류의 응집 특성)

  • Kwon, Do-Yeon;Jung, Chang-Kyou;Park, Kwang-Beom;Lee, Choul-Gyun;Lee, Jin-Won
    • KSBB Journal
    • /
    • 제26권2호
    • /
    • pp.143-150
    • /
    • 2011
  • The aim of the study was to optimize harvesting method for concentrating microalgae from microalgae mass culture. It is well known that the mass density of microalgae is usually very low and these are small size (5-20 ${\mu}m$) in the culture medium. It is essential that microalgae is harvested and concentrated economically for economical biodiesel production from microalgae. In this study, to determine optimized conditions for microalgae harvesting by chemical flocculation. Flocculation of three algae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, was performed using various chemical flocculants, such as inorganic flocculants (aluminium sulfate, aluminium potassium sulfate, ferrous sulfate, ferric sulfate, ferric chloride, calcium hydroxide, sodium carbonate, sodium nitrite, and sodium aluminate), organic flocculant (polyacrylamide), and biopolymer flocculants (chitosan and starch). The results indicated that aluminium based inorganic flocculants is suitable for microalgae harvesting such as Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta. The results also recommended that flocculant doses, agitation speed, agitation time, sedimentation time for economical microalgae harvesting method using chemical flocculants.

Influences of Sulfate and Nitrate Application on Cadmium Sorption in Soils

  • Lee, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • 제20권5호
    • /
    • pp.352-357
    • /
    • 2001
  • Cadmium (Cd) has been identified as a potential contaminant in agricultural and environmental soils. Ionic condition in the soils is an important factor to influence Cd availability. In this study, the effect of sulfate or nitrate application on Cd sorption in acidic and calcareous soils was investigated. The Cd, sulfate $(SO_4)$, and nitrate $(NO_3)$ sources were solutions of $CdCl_2$, $K_2SO_4$, and $KNO_3$, respectively. The soil-solution system pH was affected by the application of sulfate or nitrate in both acidic and calcareous soil system, but there was not clear pH difference between pre- and simultaneous applications of sulfate or nitrate (PAS/PAN or SAS/SAN). Solution ionic strength (I) values were similar between the acid and calcareous soil systems after applying the Cd even though it was significantly different in the untreated control soils. However after applying the sulfate or nitrate, the I values increased and were always higher with SAS/SAN treatments. Solution Cd concentration also increased with the application of sulfate or nitrate. However, the Cd concentration in soil solution controlled by Cd sorption in the systems was different between PAS/PAN and SAS/SAN treatments only in the calcareous soil system, but not in the acidic soil system. The difference in Cd concentration between SAS/SAN and PAS/PAN in the calcareous systems may be caused by system pH, ionic strength, complexation, and predominately, competition of the $Cd^{2-}$ with the index $K^+$ ion. Potassium ion-Cd competition in the acidic soil system may be minimized because of the abundance of hydrogen ions.

  • PDF

Growth and Wear Tolerance of Creeping Bentgrass as Influenced by Silica and Potassium Fertilization (규산 및 칼리 시비에 따른 벤트그래스 생육 및 내답압성 반응)

  • Kim, Yong-Seon;Kim, Ki-Sun
    • Asian Journal of Turfgrass Science
    • /
    • 제26권2호
    • /
    • pp.116-122
    • /
    • 2012
  • The study was conducted to know whether turfgrass wear tolerance, growth, and quality could be improved by the application of silicon and potassium. First, turf responses to silicate and potassium were evaluated by several parameters such as, turf visual quality, root length, shoot density, and dry weight under the field condition. Second, turf responses to traffic frequencies were examined by turf growth (root) length, shoot density and dry weight) and soil hardness under the field condition. Finally, under traffic stress condition, the effects of silica and potassium application on wear tolerance were evaluated through the methods described above. Creeping bentgrass (Agrostis stolonifera) rooting were significantly improved by silica. The root length was enhanced by an increase in potassium silicate application. Certain level of light traffic is beneficial while frequent traffic cause serious adverse effect on visual quality of bentgrass. Under a traffic stress condition with 10 times of footing a day for 30 days, silica and potassium increased turf visual quality by 6.38% and 10.25% respectively when compared to the control. Silica and potassium treatment on trafficked plot increased turf visual quality by 11.4% and 10.2% respectively in comparison with the control with significant reduction of wear injury from the traffic. A co-application of potassium silicate with potassium sulfate provided the enhanced visual quality of turf as compared to application of silica or potassium fertilizer, respectively.

The study of Ag etching effect by adding compound on the lead frame process (Lead frame 공정 중 화합물에 따른 Ag 에칭효과)

  • 이경수;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.859-862
    • /
    • 2001
  • This study describes a selective Ag etching solution for use with pattern on the surface of copper. This etching solution uses potassium iodide and potassium sulfate as the ligand that coordinates to the metal ions and ferricyanide as the oxidant. The etching rate was depended on the concentration of co-ligands and time. But the etching rate wasn't depended on the pH(2∼6), and oxidant(K$_3$Fe(CN)$\_$6/). Complete etching of silver can be achieved rapidly within 90sec for 4.46${\mu}$m thick metal films when aqueous solutions containing K$_3$Fe(CN)$\_$6/, K$_2$S$_2$O$\_$8/ and KI was used. This etching solution was characteristic of anisotropic etching.

  • PDF

The Strength Properties Activated Granulated Ground Blast Furnace Slag with Aluminum Potassium Sulfate and Sodium Hydroxide (칼륨명반과 수산화나트륨으로 활성화된 고로슬래그 미분말의 강도 특성)

  • Kim, Taw-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • 제27권2호
    • /
    • pp.95-102
    • /
    • 2015
  • In this paper, the effects of sodium hydroxide (NaOH) and aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) dosage on strength properties were investigated. For evaluating the property related to the dosage of alkali activator, sodium hydroxide (NaOH) of 4% (N1 series) and 8% (N2 series) was added to 1~5% (K1~K5) dosage of aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) and 1% (C1) and 2% (C2) dosage of calcium oxide (CaO). W/B ratio was 0.5 and binder/ fine aggregate ratio was 0.5, respectively. Test result clearly showed that the compressive strength development of alkali-activated slag cement (AASC) mortars were significantly dependent on the dosage of NaOH and $AlK(SO_4)_2{\cdot}12H_2O$. The result of XRD analysis indicated that the main hydration product of $NaOH+AlK (SO_4)_2{\cdot}12H_2O$ activated slag was ettringite and CSH. But at early ages, ettringite and sulfate coated the surface of unhydrated slag grains and inhibited the hydration reaction of slag in high dosage of $NaOH+AlK(SO_4)_2{\cdot}12H_2O$. The $SO_4{^{-2}}$ ions from $AlK(SO_4)_2{\cdot}12H_2O$ reacts with CaO in blast furnace slag or added CaO to form gypsum ($CaSO_4{\cdot}2H_2O$), which reacts with CaO and $Al_2O_3$ to from ettringite in $NaOH+AlK(SO_4)_2{\cdot}12H_2O$ activated slag cement system. Therefore, blast furnace slag can be activated by $NaOH+AlK(SO_4)_2{\cdot}12H_2O$.