• Title/Summary/Keyword: Posture measuring

Search Result 180, Processing Time 0.02 seconds

The Effects of Screen Smart Devices on the Neck Flexion Angle

  • Lee, Jun Cheol;Kim, Kyung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1051-1055
    • /
    • 2016
  • The purpose of this study was to investigate the effect of the screen size of smart devices on the bending angle of the cervical spine. The subjects of this study were 30 healthy adults(15 men and 15 women) who used smartphones and tablet PC(personal computer). The changes in the bending angle of the upper and lower cervical spine were measured in the subjects after they had used a smartphone and a tablet PC for 300 seconds each. To make sure that all subjects began in the same starting position, an angle-measuring instrument was used to set the angles of the ankle, knee, hip, and arm joints to 90 degree. The subjects were asked to keep the trunk straight. They were asked to hold a smartphone in their hand and to bend their neck so that they could look down at the screen. Once they began using the smartphone in this manner, they were free to change their posture. We used a paired t-test to compare the bending angle of the cervical spine on subjects who used smartphones and tablet PC in the long-term and short-term there production error of cervical and the significance level was cervical. The results showed that, when using a smartphone and a tablet PC for 300 seconds, there was no significant difference in the bending angle of the upper cervical spine(p>.05), although there was a significant difference in the bending angle of the lower cervical spine(p<.05).

Changes in the Respiratory Function of Stroke Patients on the Ground and Immersed under Water (지상과 수중에서 뇌졸중 환자의 호흡기능 변화)

  • Kim, Ju-Seung;Park, Min-Chull
    • PNF and Movement
    • /
    • v.16 no.3
    • /
    • pp.389-395
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate whether the respiratory function of patients with stroke was different on the ground and under water. Methods: We recruited 14 adults who had experienced a stroke (12 male, 2 female) for our study. We measured forced vital capacity, forced expiratory volume at one second, maximum inspiratory pressure, and maximum expiratory pressure when the participants breathed on the ground and under water. On the ground, the participants were safely supported using a table and chair and were measured in a standing posture. For measuring under water, the participants were immersed in water in a standing position to clavicle height. The participants were measured while standing, and the assistant supported them when they needed help. The collected data were analyzed by a paired t-test. Results: Forced vital capacity and forced expiratory volume at one second were significantly lower in water than on the ground when breathing at maximum. Maximum inspiratory pressure was not significantly different when standing on the ground or in water, but maximum expiratory pressure was significantly higher in water than on the ground. Conclusion: It has been confirmed that the hydrostatic pressure affecting stroke patients immersed in water affects the forced expiratory volume at one second while reducing the forced vital capacity and increasing the maximum expiratory pressure.

Effect of Coordinative Locomotor Training on Postural Imbalance and Gait in Children : A Single Subject Design (협응이동훈련이 아동의 자세 불균형과 보행에 미치는 영향 : 단일사례설계)

  • Lee, Jeong-A;Kim, Jin-Cheol
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.63-71
    • /
    • 2019
  • PURPOSE: This study was examined the effects of coordinative locomotor training (CLT) on the postural imbalance and gait in children. METHODS: Four children were sampled as subjects. A single subject study (A-B-A') was conducted by measuring the following: baseline five sessions;, intervention phase, 15 sessions;, and postline (A') five sessions. The research period was eight weeks. The CLT program consisted of warming-up exercise, main exercise, and finishing exercise, and it was performed for one hour per day. A oneleg standing test (OLST) was performed determine the static balance. A functional reach test (FRT) was performed determine the reactionary balance. To determine the dynamic balance, the time up and go test (TUG) was performed. A 10m walking test (10 MWT) was performed to determine the walking ability. A statistical test was performed through descriptive statistics to present the average and standard deviation, and the variation rate was compared using a visual analysis method with graphs. RESULTS: As a result of CLT application, all four subjects improved the OLST, FRT, TUG, and 10 MWT compared to the intervention period baseline, and postline period. CONCLUSION: CLT appeared to improve the posture imbalance and gait in children.

Effect of the Untact Trunk Stabilization Exercise Program on Muscle Thickness, Trunk Strength, Maximal Expiratory Flow, and Static Balance (비대면 체간 안정화 운동 프로그램이 근 두께, 체간 근력, 최대 호기량, 정적 균형에 미치는 영향)

  • Lee, Dong-Woo;Jeong, Mo-Beom
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.73-81
    • /
    • 2021
  • PURPOSE: This study examined effects of the untact trunk stabilization exercise program on muscle thickness, trunk strength, maximal expiratory flow, and static balance. METHODS: The subjects were 20 normal adults divided into 10 in the contact exercise group and 10 in the untact exercise group. The trunk stabilization exercise program was conducted for four weeks. The muscle thickness was measured using ultrasound. The maximal expiratory flow was measured using Personal Best Full Range Peak Flow Meter. The static balance was measured through Bio-rescue; and the trunk muscle strength was measured by bending the upper body forward and measuring the time for maintaining the posture. RESULTS: Both contact and untact exercise groups showed significant differences in muscle thickness, muscle strength, maximal expiratory flow, and static balance (p < .05). A significant difference in muscle thickness on ultrasound was observed between the contact and untact exercise groups (p < .05). CONCLUSION: Activation of the transverse abdominal muscle requires accurate instructions of the contact exercise, but despite environmental constraints, the untact exercise program is as effective as the contact exercise for improving muscle strength, maximum expiratory flow, and static balance.

Comparative analysis of cardiopulmonary resuscitation accuracy and fatigue by posture in hospitals (병원 내 심폐소생술의 자세별 피로도와 가슴압박 정확도 비교 분석)

  • Cho, Ki-Hwa;Yun, Jong-Geun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.25 no.3
    • /
    • pp.179-188
    • /
    • 2021
  • Purpose: This study aimed to identify effective cardiopulmonary resuscitation methods by comparing the fatigue of rescuers according to various positions in cardiopulmonary resuscitation situations conducted on beds in hospitals. Methods: An experimental study of students in the department of emergency medical service in H University, G Metropolitan City was conducted in four positions for applying chest pressure on mannequins on beds. Results: As a result of measuring the muscle fatigue of four muscle attachments according to the four positions conducted on the bed, the average was 3.4%, the P was significant at 0.001, and the fatigue difference was confirmed to occur depending on the attachment. An analysis of pressure depth by pose revealed that P1, P2, P3, and P4 have a depth of 58.3, 55.1, 56.4, and 56.3 mm, respectively, with P4 having the deepest depth. Conclusion: Among the various postures of the rescuer during cardiopulmonary resuscitation performed on the bed in the hospital, P1 is thought to be the most tiring, although its associated CPR quality is good.

Development of Plantar Pressure Measurement System and Personal Classification Study based on Plantar Pressure Image

  • Ho, Jong Gab;Kim, Dae Gyeom;Kim, Young;Jang, Seung-wan;Min, Se Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3875-3891
    • /
    • 2021
  • In this study, a Velostat pressure sensor was manufactured to develop a plantar pressure measurement system and a C#-based application was developed to monitor and collect plantar pressure data in real time. In order to evaluate the characteristics of the proposed plantar pressure measurement system, the accuracy of plantar pressure index and personal classification was verified by comparing with MatScan, a commercial plantar pressure measurement system. As a result, the output characteristics according to the weight of the Velostat pressure sensor were evaluated and a trend line with the reliability of r2 = 0.98 was detected. The Root Mean Square Error(RMSE) of the weighted area was 11.315 cm2, the RMSE of the x coordinate of Center of Pressure(CoPx) was 1.036 cm and the RMSE of the y coordinate of Center of Pressure(CoPy) was 0.936 cm. Finally, inaccuracy of personal classification, the proposed system was 99.47% and MatScan was 96.86%. Based on the advantage of being simple to implement and capable of manufacturing at low cost, it is considered that it can be applied to various fields of measuring vital signs such as sitting posture and breathing in addition to the plantar pressure measurement system.

Development of Safety Sensor for Vehicle-Type Forest Machine in Forest Road

  • Ki-Duck Kim;Hyun-Seung Lee;Gyun-Hyung Kim;Boem-Soo Shin
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.254-260
    • /
    • 2023
  • A sensor system has been developed that uses an ultrasonic sensor to detect the downhill slope on the side of a forest road and prevents a vehicle-type forest machine from rolling down a mountainside. A specular reflection of ultrasonic wave might cause severe issues in measuring distances to targets. By investigating the installation angle of the sensor to minimize the negative effects of specular reflection, the installation angle of lateral monitoring ultrasonic sensor could be determined based on the width of road shoulder. Obstacles such as small rocks or piece of log in a forest road may cause the forest machine to be overturned while the machine riding over due to excessive its posture change. It was determined that the laser sensor could be a part of a sensor system capable of specifying the location and size of small obstacles. Not only this sensor system including ultrasonic and laser sensors can issue a warning of dangerous sections to drivers in forest forwarders currently in use, but also it can be used as a driving safety sensor in autonomous forest machine or remote-control forest machine in the future.

Control Moment Gyroscope Torque Measurements Using a Kistler Table for Microsatellite Applications

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Yeong-Ho Shin;EunJi Lee;Sang-sub Park;Seokju Kang
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.12-26
    • /
    • 2024
  • Attitude control of a satellite is very important to ensure proper for mission performance. Satellites launched in the past had simple missions. However, recently, with the advancement of technology, the tasks to be performed have become more complex. One example relies on a new technology that allows satellites quickly alter their attitude while orbiting in space. Currently, one of the most widely used technologies for satellite attitude control is the reaction wheel. However, the amount of torque generated by reaction wheels is too low to facilitate quick maneuvers by the satellite. One way to overcome this is to implement posture control logic using a control moment gyroscope (CMG). Various types of CMGs have been applied to space systems, and CMGs are currently mounted on large-scale satellites. However, although technological advancements have continued, the market for CMGs applicable to, small satellites remains in its early stages. An ultra-small CMG was developed for use with small satellites weighing less than 200 kg. The ultra-small CMG measured its target performance outcomes using a precision torque-measuring device. The target performance of the CMG, at 800 mNm, was set through an analysis. The final torque of the CMG produced through the design after the analysis was 821mNm, meaning that a target tolerance level of 10% was achieved.

MTF Evaluation according to change in posture and channel during CT examination for wrist Joint : X-axis and Z-axis changes around Isocenter (손목관절 CT 검사 시 자세 변화와 채널 변경에 따른 MTF 평가 : Isocenter를 중심으로 X-축, Z-축 변화)

  • Seo, Min Jae;Lim, Jong Chon;Jung, Dabin;Han, Dong Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.811-817
    • /
    • 2020
  • This study aims to evaluate the Modulation Transfer Function (MTF) according to the change in the number of channels of the CT examination device by changing the posture of the patient to the X-axis and Y-axis in the wrist joint CT examination. Using a CT device and a wrist phantom, the test was performed by moving 0 (matched), 5, 10, and 15 cm in the X-axis around the isocenter, and the Z-axis was rotated by -20° and -40°. For the test, 16, -40 and 64 channels were used to check whether there was a difference for each number of channels. The examined images were compared by measuring the MTF values of the ulna and left and right sides of the radius. In the experiment where the isocenter was moved along the X-axis, the MTF value decreased with an increase in the moving distance, and the MTF value was found to be unaffected by the number of channels. In the experiment in which the wrist joint was rotated by -20° and -40° on the Z-axis, the degree of deviation and MTF were found to be irrelevant. It was not related to the number of channels either. In conclusion, the movement of the wrist along the X-axis should be restrained as much as possible for a wrist joint CT scan, whereas deviation around the Z-axis depending on the environment for the patient would not affect the MTF of the image.

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.