• Title/Summary/Keyword: Posture control

Search Result 654, Processing Time 0.027 seconds

Impact of Virtual Reality Based Neuromuscular Postural Control Fusion Training on Balance Ability and Jump Performance of Soccer Players with Functional Ankle Instability (가상현실 기반 자세조절 융합 훈련이 기능적 발목 불안정성 축구선수들의 균형과 점프에 미치는 영향)

  • Yang, Dae-Jung;Park, Seung-Kyu;Uhm, Yo-Han
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.357-367
    • /
    • 2016
  • In this study, we examined the impact on balance ability and jump performance of soccer players with functional ankle instability using virtual reality based neuromuscular posture control fusion training. Soccer players were divided into 15 people of virtual reality-based neuromuscular posture control fusion training group and 15 people of common treadmill training group and performed for 30 minutes three times a week for 8 weeks. In order to evaluate the balance of ability, using biorescue, it measured surface area, whole path length, limit of stability. In order to measure jump performance, it measured counter movement jump with arm swing and standing long jump. The results showed the statistically significant difference in the balance comparison of surface area, whole path length, limited of stability and the jump performance comparison of counter movement jump with arm swing, standing long jump. As a result, virtual reality-based neuromuscular posture control fusion training was found to be more effective to improve its balance ability and jump performance than common treadmill training.

The effect of a balance on deep abdominal muscles in an acute hemiplegic patient through stabilizing reversal, chopping and lifting (안정적 반전, 내려치기 그리고 들어올리기를 통한 하부체간 심층근육 강화운동이 초기 편마비 환자의 균형에 미치는 영향 - 증례 보고 -)

  • Jeon, Yoon-Seon;Lee, seung-hoon;Goo, Bong-Oh
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.37-43
    • /
    • 2009
  • Purpose : The purpose of this study was to evaluate the effect of core stability training at deep abdominal muscle for balance control of hemiplegic patient. Method : The subject of this study was a 47-year-old man with right hemiplegia. He was treated five times a week for three weeks with core stability training at deep abdominal muscles. Evaluation tool was used Functional reach test(FRT), timed up and go test(TUG) and one leg standing for stroke patients. Result : The FRT distance increase, TUG time decrease, one leg standing time increase core stability training at deep abdominal muscles for right hemiplegia improved was the ability for maintain balance. Posture and control of trunk stability are changing posture, and so which showed significant improve of total balance control. Conclusion : The result of this study showed that core stability training at deep abdominal muscles is an effective treatment for balance control. Therefore, it could be considered as a treatment method in the rehabilitation of stroke patient with poor postural control and imbalance, although further studies are needed.

  • PDF

Walking Motion Planning for Quadruped Pet Robot (4족 애완로봇을 위한 보행운동 계획)

  • Yi, Soo-Yeong;Choi, Dae-Sung;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.626-633
    • /
    • 2009
  • A motion planning algorithm is presented in this paper for a commercialized quadruped walking of robot pet. Stable walking is the basic requirement for a commercial-purpose legged robot. In order to secure the walking stability, modified body sway to the centroid of support polygon is addressed. By representation of walking motion with respect to the world coordinate system rather than body coordinate, it is possible to design the several gaits in unified fashion. The initial gait posture is introduced to maximize the stride and to achieve fast walking. The proposed walking motion planning is verified through computer simulation and experiments.

A Study on the Real Time Auto-Balancing of a Casing Oscillator Using Posture Feedback Control (위치 피드백 제어를 이용한 케이싱 오실레이터의 실시간 오토밸런싱에 관한 연구)

  • 이은준;김주영;백재호;박명관
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.688-696
    • /
    • 2003
  • The casing oscillator used for basic construction of buildings, factories and bridges is a construction machine, which rotates and rolls the casing to insert it into the ground. It is very important that the casing is positioned perpendicular to the sea level regardless of the slope of the ground. In this paper, we present a new casing oscillator that doesn't need additional work to level the ground for the casing insertion. The kinematic analysis fur work space of a casing oscillator is presented and carried out with auto-balancing of the casing oscillator using posture feedback control.

On a Posture Control of Human Robot Master Arm

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.24-31
    • /
    • 2006
  • This study developed a human robot mast arm, which has a structure similar to the human arm, with the objective of taking over human works. The robot arm was structured to reproduce human actions using three axes on each of the shoulder and the wrist based on mechanics, and the actuator of each axis adopted an ordinary DC motor. The servo system of the actuator is a one body type employing an amp for electric power, and it was designed to be small and lightweight for easy installation. We examined the posture control characteristics of the developed robot mast arm in order to test its interlocking, continuous motions and reliability.

Development of a Omni-directional Self-Balancing Robot Wheelchair (전방향 셀프-밸런싱 로봇휠체어 개발)

  • Yu, Jaerim;Park, Yunsu;Kim, Sangtae;Kwon, SangJoo
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.229-237
    • /
    • 2013
  • In this paper, we report a self-balancing robot wheelchair which has the capability of keeping upright posture regardless of the terrain inclination in terms of the three dimensional balancing motion. It has the mobility of five degrees of freedom, where pitching, yawing, and forward motions are generated by the two-wheeled inverted pendulum mechanism and the rolling and vertical motions are implemented by the movement of the tilting mechanism. Several design considerations are suggested for the sliding type vehicle body, wheel actuator module, tilting actuator module, power and control system, and the riding module.

A Study on Collision Avoidance for Multi-link Intelligent Robots (다관절 지능 로봇시스템을 위한 장애물 우회 연구)

  • 신현배;이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.165-173
    • /
    • 1998
  • In this paper, a motion control algorithm is developed by using fuzzy control technique, which makes a robot arm avoid unexpected obstacles when the robot is moving from the start to a goal posture. During the motion, if there exist no obstacles the robot arm moves along the pre-defined path. But if some obstacles are recognized and close to the robot arm, a fuzzy controller is activated to adjust the path of the robot arm. To show the feasibility of the developed algorithm, numerical simulations and experiments are carried out. In the experiments, redundant planar robot arms are considered for the collision avoidance test, and it was proved that the developed algorithm gives good collision avoiding performance.

  • PDF

A study on the improvement of the robot motion control as a part of the integrated human and robot ergonomics (Integrated Human and Rob-ot Ergonomics의 측면에서 로보트의 동작제어 개선에 관한 연구)

  • 이순요;권규식;홍승권
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.21-27
    • /
    • 1990
  • Teaching Expert System/World Coordinate System(TES/WDS) was proposed to improve robot motion control. First, precise coordinate reading for getting the inherent data about position and posture of task objects was performed throgh the integrated image and fuzzy processing. Second, singularity and parameter limitation problems in getting the motion data about position and posture of robot in macro motion were solved by proposed geometric algorithm. Third, the unnecessary robot motion was also removed by the Robot Time and Motion (RTM) method and the Multi-Geometric Straight-Line Motion (MGSLM) method in micro motion. This results demonstrated reduction of the average teaching task time according to task order.

  • PDF

Effects of Head Posture on the Rotational Torque Movement of Mandible in Patients with Temporomandibular Disorders (두경부 위치에 따른 측두하악장애환자의 하악 torque 회전운동 분석)

  • Park, Hye-Sook;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.2
    • /
    • pp.173-189
    • /
    • 2000
  • The purpose of this study was to evaluate the effect of specific head positions on the mandibular rotational torque movements in maximum mouth opening, protrusion and lateral excursion. Thirty dental students without any sign or symptom of temporomandibular disorders(TMDs) were included as a control group and 90 patients with TMDs were selected and examined by routine diagnostic procedure for TMDs including radiographs and were classified into 3 subgroups : disc displacement with reduction, disc displacement without reduction, and degenerative joint disease. Mandibular rotational torque movements were observed in four head postures: upright head posture(NHP), upward head posture(UHP), downward head posture(DHP), and forward head posture(FHP). For UHP, the head was inclined 30 degrees upward: for DHP, the head was inclined 30 degrees downward: for FHP, the head was positioned 4cm forward. These positions were adjusted with the use of cervical range-of-motion instrumentation(CROM, Performance Attainment Inc., St. Paul, U.S.A.). Mandibular rotational torque movements were monitored with the Rotate program of BioPAK system (Bioresearch Inc., WI, U.S.A.). The rotational torque movements in frontal and horizontal plane during mandibular border movement were recorded with two parameters: frontal rotational torque angle and horizontal rotational torque angle. The data obtained was analyzed by the SAS/Stat program. The obtained results were as follows : 1. The control group showed significantly larger mandibular rotational angles in UHP than those in DHP and FHP during maximum mouth opening in both frontal and horizontal planes. Disc displacement with reduction group showed significantly larger mandibular rotational angles in DHP and FHP than those in NHP during lateral excursion to the affected and non-affected sides in both frontal and horizontal planes(p<0.05). 2. Disc displacement without reduction group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening as well as lateral excursion to the affected and non-affected sides in both frontal and horizontal planes. Degenerative joint disease group showed significantly larger mandibular rotational angles in FHP than those in any other head postures during maximum mouth opening, protrusion and lateral excursion in both frontal and horizontal planes(p<0.05). 3. In NHP, mandibular rotational angle of the control group was significantly larger than that of any other patient subgroups. Mandibular rotational angle of disc displacement with reduction group was significantly larger than that of disc displacement without reduction group during maximum mouth opening in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group or degenerative joint disease group during maximum mouth opening in the horizontal plane(p<0.05). 4. In NHP, mandibular rotational angles of disc displacement without reduction group were significantly larger than those of the control group or disc displacement with reduction group during lateral excursion to the affected side in both frontal and horizontal planes. Mandibular rotational angle of disc displacement without reduction group was significantly smaller than that of the control group during lateral excursion to the non-affected side in frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of disc displacement with reduction group during lateral excursion to the non-affected side in the horizontal plane(p<0.05). 5. In NHP, mandibular rotational angle of the control group was significantly smaller than that of disc displacement with reduction group or disc displacement without reduction group during protrusion in the frontal plane. Mandibular rotational angle of disc displacement without reduction group was significantly larger than that of the disc displacement with reduction group or degenerative joint disease group during protrusion in the horizontal plane. Mandibular rotational angle of the control group was significantly smaller than that of disc displacement without reduction group or degenerative joint disease group during protrusion in the horizontal plane(p<0.05). 6. In NHP, disc displacement without reduction group and degenerative joint disease group showed significantly larger mandibular rotational angles during lateral excursion to the affected side than during lateral excursion to the non-affected side in both frontal and horizontal planes(p<0.05). The findings indicate that changes in head posture can influence mandibular rotational torque movements. The more advanced state is a progressive stage of TMDs, the more influenced by FHP are mandibular rotational torque movements of the patients with TMDs.

  • PDF