• Title/Summary/Keyword: Postharvest losses

Search Result 22, Processing Time 0.015 seconds

Temperature and length of cold storage affect the Quality Maintenance of fresh kiwifruit (Actinidia chinensis Planch) (저온저장 온도 및 저장기간이 키위 "골드"의 품질 유지에 미치는 효과)

  • Yang, Yong-Joon;Lim, Byung-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of temperature and length of cold storage on the quality maintenance of fresh "Gold" kiwifruit were investigated. Physio-chemical properties were analyzed in kiwifruit held at $2^{\circ}C$ and $6^{\circ}C$ temperatures compared to fruit at room temperature ($20{\sim}28^{\circ}C$) during 8 weeks of storage. Low temperatures ($2^{\circ}C$ and $6^{\circ}C$) significantly delayed softening and soluble solids content (SSC) accumulation compared to higher temperature ($20{\sim}28^{\circ}C$). Physico-chemical properties of fruits, including weight losses, firmness, SSC, titratable acidity (TA), SSC/TA ratio, and flesh color properties were monitored during storage. Fast firmness loss was detected in fruit stored at higher temperatures compared to low temperature ($2^{\circ}C$). Similar results were observed for acidity according to storage temperature and length of cold storage, whereas SSC increased to the limited values (%Brix) during storage. The soluble solids content (SSC) increased markedly during the first 60 days of storage and remained almost constant thereafter for all treatments. SSC accumulation rates decreased from 5 weeks after storage probably due to differences between initial and ripe kiwifruits, and SSC decreased with each passing week due to natural starch conversion over time. The SSC/acid ratio increased from 18 to 27 until 5 weeks after storage and then slowly declined in all kiwifruit stored at different low temperatures. Sensory evaluation results showed no differences in kiwifruit flesh color stored at two storage temperatures of $2^{\circ}C$ and $6^{\circ}C$.

Assessment of the resistance of bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum KACC 21701 in Kimchi cabbage genetic resources

  • Parthiban Subramanian;Ho Chul Ko;Seong-Hoon Kim;Jae Eun Lee;Aejin Hwang;Bichsaem Kim;Yoon-Jung Lee;Awraris Derbie Assefa;Onsook Hur;Nayoung Ro;Jung Sook Sung;Ju Hee Rhee;Ho-Sun Lee;Bum-Soo Hahn
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.433-441
    • /
    • 2022
  • Bacterial phytopathogen Pectobacterium causes soft rot disease in several vegetable crops globally, resulting in heavy agricultural losses at both the pre and postharvest stages. The present work was carried out to screen Kimchi cabbage genetic resources conserved at the National Agrobiodiversity Center, Rural Development Administration, Korea, for resistance against the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum KACC 21701 over a period of three years (from 2020 to 2022). Infection of the phytopathogen was carried out at four-leaf stage and for each accession, twenty-five plants per germplasm were infected with KACC 21701. Kimchi cabbage cultivars Wangmatbaechu, Seoulbaechu, and CR Kiyoshi were used as control. Seven-days post-infection, the Disease Index (DI) values were manually recorded from zero to four, zero matched perfectly heathy plants and four completely dead plants. The 682 accessions of Kimchi cabbage exhibited varying degrees of disease resistance to KACC 21701 and thirty accessions, exhibiting a DI≤2, were considered for replication studies. During the replication studies, four landrace germplasms (IT102883, IT120036, IT120044, and IT120048) and one cultivar(IT187919) were confirmed to be moderately susceptible to KACC 21701. Results of the preliminary screening as well as replication studies were documented for the all the 682 germplasms. Addition of such information to the passport data of stored germplasms might serve as potential bio-resource for future breeders and researchers to develop resistant varieties or study the mechanisms involved in resistance of plants to such phytopathogen.