• Title/Summary/Keyword: Post-transcriptional modification

Search Result 26, Processing Time 0.023 seconds

Expression of Cu/Zn SOD Protein Is Suppressed in hsp 70.1 Knockout Mice

  • Choi, S-Mi;Park, Kyung-Ae;Lee, Hee-Joo;Park, Myoung-Sook;Lee, Joung-Hee;Park, Kyoung-Chan;Kim, Man-Ho;Lee, Seung-Hoon;Seo, Jeong-Sun;Yoon, Byung-Woo
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.111-114
    • /
    • 2005
  • Heat shock proteins (HSPs) are known to protect cells from oxidative stress and other types of injuries. We previously reported the neuroprotective effect of HSP70 following cerebral ischemia and reperfusion using hsp 70.1 knockout (KO) mice. However, the precise role of HSP70 in neuroprotection has not been established yet. The purpose of this study was to investigate the relationship between HSP70 and antioxidant enzymes using hsp 70.1 KO mice. The activities of both SOD-1 and SOD-2 were significantly decreased in hsp 70.1 KO mice than in the wild type (WT) littermates. SOD-1 protein level in the hsp 70.1 KO mice was lower than that of WT. We speculate that HSP70 might be involved in regulation of expression of SOD-1 at the level of transcription or by post-transcriptional modification.

Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing

  • Jeong-Min Park;Seungji Choi;Dong Kyu Choi;Hyun-Shik Lee;Dong-Hyung Cho;Jungmin Choi;Hong-Yeoul Ryu
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.47-54
    • /
    • 2024
  • In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.

Discovery of UBE2I as a Novel Binding Protein of a Premature Ovarian Failure-Related Protein, FOXL2 (조기 난소 부전증 유발 관련 단백질인 FOXL2의 새로운 결합 단백질 UBE2I의 발견)

  • Park, Mira;Jung, Hyun Sook;Kim, Hyun-Lee;Pisarska, Margareta D.;Ha, Hye-Jeong;Lee, Kangseok;Bae, Jeehyeon;Ko, Jeong-Jae
    • Development and Reproduction
    • /
    • v.12 no.3
    • /
    • pp.289-296
    • /
    • 2008
  • BPES (Blepharophimosis/Ptosis/Epicanthus inversus Syndrome) is an autosomal dominant disorder caused by mutations in FOXL2. Affected individuals have premature ovarian failure (POF) in addition to small palpebral fissures, drooping eyelids, and broad nasal bridge. FOXL2 is a member of the forkhead family transcription factors. In FOXL2-deficient ovaries, granulosa cell differentiation dose not progress, leading to arrest of folliculogenesis and oocytes atresia. Using yeast two-hybrid screening of rat ovarian cDNA library with FOXL2 as bait, we found that small ubiquitin-related modifier (SUMO)-conjugating E2 enzyme UBE2I protein interacted with FOXL2 protein. UBE2I also known as UBC9 is an essential protein for processing SUMO modification. Sumoylation is a form of post-translational modification involved in diverse signaling pathways including the regulation of transcriptional activities of many transcriptional factors. In the present study, we confirmed the protein-protein interaction between FOXL2 and UBE2I in human cells, 293T, by in vivo immunoprecipitation. In addition, we generated truncated FOXL2 mutants and identified the region of FOXL2 required for its association with UBE2I using yeast-two hybrid system. Therefore, the identification of UBE2I as an interacting protein of FOXL2 further suggests a presence of novel regulatory mechanism of FOXL2 by sumoylation.

  • PDF

Activation of the NF-$\kappa$B p50/p65 Complex in Human Lung Cancer Cell Lines (인체 폐암세포주에서 NF-$\kappa$B p50/p65 Complex의 활성화)

  • Choi, Hyung-Seok;Yoo, Chul-Gyu;Lee, Choon-Taek;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 1999
  • Background: NF-$\kappa$B is a characteristic transcriptional factor whose functional activity is determined by post-translational modification of protein and subsequent change of subcellular localization. The involvement of the NF-$\kappa$B family of the transcription factors in the control of such vital cellular functions as immune response, acute phase reaction, replication of certain viruses and development and differentiation of cells has been clearly documented in many previous studies. Several recent observations have suggested that the NF-$\kappa$B might also be involved in the carcinogenesis of some hematological and solid tumors. Investigating the possibility that members of the NF-$\kappa$B family participate in the molecular control of malignant cell transformation could provide invaluable information on both molecular pathogenesis and cancer-related gene therapy. Method: To determine the expression patterns and functional roles of NF-$\kappa$B family transcription factors in human lung cancer cell lines NCI-H792, NCI-H709, NCI-H226 and NCI-H157 were analysed by western blot, using their respective antibodies. The nuclear and the cytoplasmic fraction of protein extract of these cell lines were subsequently obtained and NF-$\kappa$B expression in each fraction was again determined by western blot analysis. The type of NF-$\kappa$B complex present in the cells was determined by immunoprecipitation. To detect the binding ability of cell-line nuclear extracts to the KB consensus oligonucleotide, electrophoretic mobility shift assay(EMSA) was performed. Results: In the cultured human lung cancer cell lines tested, transcription factors of the NF-$\kappa$B family, namely the p50 and p65 subunit were expressed and localized in the nuclear fraction of the cellular extract by western blot analysis and immunocytochemistry. Immunoprecipitation assay showed that in the cell, the p50 and p65 subunits made NF-$\kappa$B complex. Finally it was shown by Electrophoretic Mobility Shift Assay(EMSA) that nuclear extracts of lung cancer cell lines are able to bind to NF-$\kappa$B consensus DNA sequences. Conclusion: These data suggest that in human lung cancer cell lines the NF-$\kappa$B p50/p65 complex might be activated. and strengthen the hypothesis that NF-$\kappa$B family transcription factors might be involved in the carcinogenesis of human lung cancer.

  • PDF

Roles of MicroRNA-21 and MicroRNA-29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer

  • Mohamad, Maisarah;Wahab, Norhazlina Abdul;Yunus, Rosna;Murad, Nor AzianAbdul;Zainuddin, Zulkifli Md;Sundaram, Murali;Mokhtar, Norfilza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3437-3445
    • /
    • 2016
  • Background: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be down-regulated in clinical samples, most likely due to the post-transcriptional modification by microRNAs. Targeted genes would be up-regulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors. Materials and Methods: MicroRNA software predicted that miR-21 targets VCL while miR-29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalin-fixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE-1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels. Results: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down-regulated while CX3CL1 was up-regulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly upregulated while CX3CL1 mRNA was significantly down-regulated compared to the RWPE-1 case. Conclusions: The down-regulation of VCL in FFPE specimens is most likely regulated by miR-21 based on the in vitro evidence but the exact mechanism of how miR-21 can regulate VCL is unclear. Up-regulated in CaP, CX3CL1 was found not regulated by miR-29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNA-mRNA interactions may provide additional knowledge for individualized study of cancers.

Functional implications of gene expression analysis from rice tonoplast intrinsic proteins during seed germination and development (벼 종자에서 액포막 aquaporin (tonoplast intrinsic protein) 유전자의 발현과 기능)

  • Huh, Sun-Mi;Lee, In-Sook;Kim, Beom-Gi;Shin, Young-Seop;Lee, Gang-Seop;Kim, Dool-Yi;Byun, Myung-Ok;Kim, Dong-Hern;Yoon, In-Sun
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.517-528
    • /
    • 2010
  • Rice seed maturation and germination involve drastic changes in water and nutrient transport, in which tonoplast aquaporins may play an important role. In the present study, gene expression profiles of 10 tonoplast intrinsic proteins (TIP) from rice were investigated by RT-PCR during seed development and germination. OsTIP3;1 and OsTIP3;2 were specifically expressed in mature seeds. Their transcript level rapidly decreased after onset of seed germination and gene expression was induced by ABA treatment. In contrast, expression of OsTIP2;1 and OsTIP4;3 was not seed specific as transcripts were found in vegetative tissues as well. Their respective transcript levels decreased at an early stage of seed development, whereas they increased at a later stage of seed germination and elongation of embryonic roots and shoots. When seed germination was inhibited by various stress conditions and ABA, expression of OsTIP2;1 and OsTIP4;3 was completely suppressed. In contrast, the expression level of OsTIP2;2 rapidly increased after seed imbibition and the transcript level was maintained under conditions inhibiting seed germination. These results implicate that tissue specific and developmental transcriptional regulation of OsTIPs in rice seeds depends on their specific function. In addition, OsTIPs can be discriminated by different potential phosphorylation and methylation sites in their protein structures. OsTIP3;1 and OsTIP3;2 possess unique phosphorylation signatures at their N-terminal domain, loop B and loop E, respectively. OsTIP2;1 and OsTIP4;3 have a potential methylation site at their Nterminal domain. This suggests that activity of specific tonoplast aquaporins may be regulated by post-translational modification as well as by transcriptional control.