• Title/Summary/Keyword: Post-Failure Analysis

Search Result 265, Processing Time 0.026 seconds

Analysis of a damaged industrial hall subjected to the effects of fire

  • Kmet, Stanislav;Tomko, Michal;Demjan, Ivo;Pesek, Ladislav;Priganc, Sergej
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.757-781
    • /
    • 2016
  • The results of diagnostics and analysis of an industrial hall located on the premises of a thermal power plant severely damaged by fire are presented in the paper. The comprehensive failure-related diagnostics, non-destructive and destructive tests of steel and concrete materials, geodetic surveying of selected structural members, numerical modelling, static analysis and reliability assessment were focused on two basic goals: The determination of the current technical condition of the load bearing structure and the assessment of its post fire resistance as well as assessing the degree of damage and subsequent design of reconstruction measures and arrangements which would enable the safe and reliable use of the building. The current mechanical properties of the steel material obtained from the tests and measured geometric characteristics of the structural members with imperfections were employed in finite element models to study the post-fire behaviour of the structure. In order to compare the behaviour of the numerically modelled steel roof truss, subjected to the effects of fire, with the real post-fire response of the damaged structure theoretically obtained resistance, critical temperature and the time at which the structure no longer meets the required reliability criteria under its given loading are compared with real values. A very good agreement between the simulated results and real characteristics of the structure after the fire was observed.

Analysis on the Behavior of Post-tensioned Precast Beam-Column Concrete Connectors (포스트텐션 프리캐스트 보-기둥 건식 콘크리트 접합부의 거동분석)

  • Song Hyung Soo;Ryu Jung Wook;Kim Yun Soo;Yu Sung Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.41-44
    • /
    • 2005
  • Three precast concrete beam-column connectors for the high-rise office buildings were considered to investigate the prestressing effects of the DDC(Dywidag Ductile Connectors) of Germany and of the modified DDC. The specimens of DDC, DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical x-shape crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

  • PDF

Simplified Collapse Analysis of Ship Transverse Structures

  • Yang, Park-Dal-Chi
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1993
  • In this paper, a thoery for the static analysis of large plastic deformations of 3-dimentional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam and post-failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review

  • Sae Rom Chung;Young Jun Choi;Chong Hyun Suh;Jeong Hyun Lee;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.649-661
    • /
    • 2019
  • Objective: To systematically review the evaluation of the diagnostic accuracy of pre-treatment apparent diffusion coefficient (ADC) and change in ADC during the intra- or post-treatment period, for the prediction of locoregional failure in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Ovid-MEDLINE and Embase databases were searched up to September 8, 2018, for studies on the use of diffusion-weighted magnetic resonance imaging for the prediction of locoregional treatment response in patients with HNSCC treated with chemoradiation or radiation therapy. Risk of bias was assessed by using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Results: Twelve studies were included in the systematic review, and diagnostic accuracy assessment was performed using seven studies. High pre-treatment ADC showed inconsistent results with the tendency for locoregional failure, whereas all studies evaluating changes in ADC showed consistent results of a lower rise in ADC in patients with locoregional failure compared to those with locoregional control. The sensitivities and specificities of pre-treatment ADC and change in ADC for predicting locoregional failure were relatively high (range: 50-100% and 79-96%, 75-100% and 69-95%, respectively). Meta-analytic pooling was not performed due to the apparent heterogeneity in these values. Conclusion: High pre-treatment ADC and low rise in early intra-treatment or post-treatment ADC with chemoradiation, could be indicators of locoregional failure in patients with HNSCC. However, as the studies are few, heterogeneous, and at high risk for bias, the sensitivity and specificity of these parameters for predicting the treatment response are yet to be determined.

Analytical Model for Post Tension Flat Plate Frames (포스트 텐션 플랫 플레이트 골조의 해석모델)

  • Han, Sang-Whan;Ryu, Jong-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.23-32
    • /
    • 2007
  • This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.

Effects of the location and size of web openings on shear behavior of clamped-clamped reinforced concrete beams

  • Ceyhun Aksoylu;Yasin Onuralp Ozkilic;Ibrahim Y. Hakeem;Ilker Kalkan
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.251-264
    • /
    • 2024
  • The present study pertains to the effects of variations in the location and size of drilled web openings on the behavior of fixed-fixed reinforced concrete (RC) beams. For this purpose, a reference bending beam with a transverse opening in each half span was tested to failure. Later, the same beam was modeled and analyzed with the help of finite element software using ABAQUS. Upon achieving close agreement between the experimental and numerical results, the location and size of the web opening were altered to uncover the effects of these factors on the shear strength and load-deflection behavior of RC beams. The experimental failure mode of the tested beam and the numerical results were also verified by theoretical calculations. In numerical analysis, when compared to the reference (D0) specimen, if the distance of the opening center from the support is 0 or h or 2h, reduction in load-bearing capacity of 1.5%-22.8% or 2.0%-11.3% or is 4.1%-40.7%. In other words, both the numerical analyses and theoretical calculations indicated that the beam behavior shifted from shear-controlled to flexure-controlled as the openings approached the supports. Furthermore, the deformation capacities, energy absorption values, and the ductilities of the beams with different opening diameters also increased with the decreasing distance of the opening from supports. Web compression failure was shown to be the predominant mode of failure of beams with large diameters due to the lack of sufficient material in the diagonal compression strut of the beam. The present study indicated that transverse openings with diameters, not exceeding about 1/3 of the entire beam depth, do not cause the premature shear failure of RC beams. Finally, shear damage should be prevented by placing special reinforcements in the areas where such gaps are opened.

Reliability Analysis of Prestress Concrete Box Girder Bridges Considering Inspection Cost (검측비용을 고려한 PC박스 거더의 신뢰성 분석)

  • Nguyen, Van Son;Jeong, Min-Chul;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.476-479
    • /
    • 2010
  • In recent years, the deterioration of infrastructures is especially considered. In prestress concrete bridges, one of the important mechanisms of deterioration is the corrosion of the post-tensioned tendon due to environmental agents. In this study, the reliability analysis is performed for a prestress concrete box girder bridge under the pitting corrosion attack with considering the inspection and failure cost. The variation of life-time performance depending on inspection methods have to be quantified. The inspection methods with different accuracy of corrosion detection are presented and applied for model of reliability analysis. The computer program for analysis reliability index of the structure as well as updating process is obtained. An existing bridge is applied for illustrating the influence of inspection cost on the behaviors of structure. Subsequently, the benefit of inspection has shown to predict the time to failure of structure.

  • PDF

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire exposures

  • Mirza, Olivia;Shil, Sukanta Kumer;Rashed, M.G.;Wilkins, Kathryn
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.529-542
    • /
    • 2021
  • Shear connectors are required to build composite (concrete and steel) beams. They are placed at the interface of concrete and steel to transfer shear and normal forces between two structural components. Such composite beams are sensitive to provide structural integrity when exposed to fire as they loss strength, stiffness, and ductility at elevated temperature. The present study is designed to investigate the shear resistance and the failure modes of the headed stud shear connectors at fire exposure and post-fire exposure. The study includes ordinary concrete and concrete with carbon nanotubes (CNTs) to build composite (concrete-steel) beams with structural steel. Experimental push tests were conducted on composite beams at ambient and elevated temperatures, such as 200, 400 & 600℃. Moreover, push tests were performed on the composite beams after being exposed to 200, 400 & 600℃. Push test results illustrated the reduction of ultimate shear capacity and stiffness of headed stud shear connectors as the temperature increased. Although similar values of ultimate shear were obtained for the headed stud connectors in both ordinary and CNT concrete, the CNT modified concrete reduced the concrete spalling and cracking compared to ordinary concrete and was observed to be effective at temperatures greater than 400℃. All specimens showed a lower shear resistance at fire exposures compared to the corresponding post-fire exposures. Moreover, numerical simulation by Finite Element (FE) analyses were carried out at ambient temperature and at fire conditions. The FE analysis results show a good agreement with the experimental results. In the experimental studies, failure of all specimens occurred due to shear failure of headed stud, which was later validated by FE analyses using ABAQUS.