• Title/Summary/Keyword: Post weld heat treatment

Search Result 117, Processing Time 0.024 seconds

Effect of Post-Weld Heat Treatment on the Mechanical Properties and Microstructure of P-No. 1 Carbon Steels (P-No. 1 탄소강의 기계적 특성과 미세조직에 미치는 용접후열처리의 영향)

  • Lee, Seung-Gun;Kang, Yongjoon;Kim, Gi-Dong;Kang, Sung-Sik
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • This study aims to investigate the suitability of requirement for post-weld heat treatment(PWHT) temperature when different P-No. materials are welded, which is defined by ASME Sec. III Code. For SA-516 Gr. 60 and SA-106 Gr. B carbon steels that are typical P-No. 1 material, simulated heat treatment were conducted for 8 h at $610^{\circ}C$, $650^{\circ}C$, $690^{\circ}C$, and $730^{\circ}C$, last two temperature falls in the temperature of PWHT for P-No. 5A low-alloy steels. Tensile and Charpy impact tests were performed for the heat-treated specimens, and then microstructure was analyzed by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. The Charpy impact properties deteriorated significantly mainly due to a large amount of cementite precipitation when the temperature of simulated heat treatment was $730^{\circ}C$. Therefore, when dissimilar metal welding is carried out for P-No. 1 carbon steel and different P-No. low alloy steel, the PWHT temperature should be carefully selected to avoid significant deterioration of impact properties for P-No. 1 carbon steel.

The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars (이종마찰용접 강봉재의 기계적특성과 비파괴 평가)

  • Jung, W.T.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

The influence of post weld heat treatment on mechanical properties of stainless steel weldment (스테인리스강 용접부의 기계적 성질에 미치는 후열처리의 영향)

  • 한종만;한기형;이은배;허만주;한용섭
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.75-85
    • /
    • 1996
  • In this paper the influence of postweld heat treatment on mechanical properties of SMAW and FCAW stainless steel weldments was examined and the obtained results are as follows ; (1) The amount of $\delta$-ferrite formed by SMAW and FCAW process decreased with increasing holding temperature and time in post weld heat treatment(PWHT), and it was found that the reduced ferrite was transformed into sigma phase after $800^{circ}C{\times}50hr$ PWHT. This sigma phase, even though it was very small, resulted in brittleness of dissimilar weldment between carbon steel and stainless steel in bending test, however in similar weldment between stainless steel and stainless steel was not occured. (2) The chemical composition of sigma phase was measured to 28-30%Cr, 7-9%Mo, 4-6Ni in 316L weldment, and also 35-37%Cr, 0.9-1.0Mo, 6-8%Ni in 309L weldment by EDS analysis.

  • PDF

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

A study on stress corrosion cracking of weld zone in 304-stainless steel (304 스테인레스鋼 熔接部의 응력부식구열에 관한 硏究)

  • 김경일;강인찬
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.35-43
    • /
    • 1987
  • The effect of post weld heat treatment (P.W.H.T) on the propagation rate of stress corrosion cracking(S.C.C) and threshold stress intensity factor ($K_{IC}.c.c$) for stress corrosion cracking of 304 stainless steel has been investigated in boiling 45% $MgCl_2$ solutions with W.O.L specimens. Specimens were precracked by turning a pair of Cr-Mo steel bolts into a machined slot at the end of the specimen. The fracture surface was examined fractographically by Scanning Electron Microscope(S.E.M.)

  • PDF

Effect of Post Weld Heat Treatment for Crystal Orientation Distribution on Friction Stir Welds of Al-Mg-Si Series Aluminum Alloy Sheets (Al-Mg-Si계 알루미늄 합금 판재 마찰교반접합부의 결정 방위 분포에 대한 용접후열처리의 영향)

  • Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.62-67
    • /
    • 2009
  • Friction stir welding (FSW) was carried out for Al-Mg-Si series aluminum alloys which are being used for automotive body structure. Consequently, Post weld heat treatment (PWHT) was applied to the friction stir welds to evaluate the effect of the paint baking process which is one of the automotive fabrication process on friction stir welded zone (FSWZ) in 443K for 1.2Ks. Grain structure and its crystal orientation distribution was measured about both the as welded specimens and the post weld heat treated specimens. An optical microscope (OM) and an field emission scanning electron microscope (FE-SEM) was used for observing the grain structure and measuring its crystal orientation distribution, respectively. Changes on the grain structure and its crystal orientation distribution were not detected. From the present results, it was confirmed that the paint baking process after FSW do not affect on the grain structure and its crystal orientation distribution of FSWZ. The comprehensive investigations will be performed for various automotive aluminum alloys manufactured by different processes, in the future.

A Study on Improvement of Fatigue Strength of Electrical Panel Weldments in Naval Vessels by Post Weld Treatment (함정용 배전반 용접부의 용접후처리 방법에 의한 피로강도 증대 효과에 관한 연구)

  • Kim, Myung-Hyun;Kang, Min-Su;Kang, Sung-Won
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.55-60
    • /
    • 2008
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The panels may be exposed to vibration and fatigue loadings from internal and external sources and wave loading which cause fatigue cracking. In this study, common methods such as burr grinding and post weld heat treatment (PWHT), for the fatigue strength improvement of weldments are investigated. Burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. And also PWHT is carried out for the purpose of removing residual. The effectiveness of the two post treatment methods is evaluated in terms of fatigue strength improvement of welded structures.

Effects of Projection Height and Post Treatment on the Resistance Projection Weldability of Zn Coated Sheet Steels (아연도금 강재의 용접성에 미치는 돌기 성형 및 피복조건의 영향)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper resistance projection weldability of Zn coated steels with post treatment has been discussed. Projection welding was performed by a condenser discharge type power source which was equipped with welding parameter monitoring system. Mechanical test results indicated that the effect of post coatings on the projection front changed showing very small very small spattering at the weld strength was negligible. However, contamination rate of the block electrode varied depending on the post treatment coatings. Test results also showed that projection height before welding should be kept to be 80-100% of the specimen thickness as far as the surface quality was taken into consideration. Based on the high speed photography, discharge condition at the beginning stage of the welding process. It was considered that the spattering reduced the weld strength slightly at the optimum heat input range.

  • PDF

Evaluation of Microstructure and Mechanical Properties on Post-Weld Heat Treatment in the Heat Affected Zone of SA508 Gr.4N Ni-Mo-Cr Low Alloy Steel for Reactor Pressure Vessel (원자로압력용기용 SA508 Gr.4N Ni-Mo-Cr계 저합금강 용접열영향부의 용접후열처리에 따른 미세조직과 기계적 특성 평가)

  • Lee, Yoon-Sun;Kim, Min-Chul;Lee, Bong-Sang;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.139-146
    • /
    • 2009
  • The heat-affected zone (HAZ) of SA508 Gr.4N Ni-Mo-Cr low alloy steel, which has higher Ni and Cr contents than SA508 Gr.3 Mn-Mo-Ni low alloy steel, was investigated on the microstructure and mechanical properties. The HAZ was categorized into seven characteristic zones (CGCG, FGCG, ICCG, SCCG, FGFG, ICIC and SCSC-HAZ) according to the peak temperature from the thermal cycle experienced during multi-pass welding. Post Weld Heat Treatment (PWHT) was conducted in the temperature range of $550{\sim}610^{\circ}C$ for 30 hours to evaluate the effect of PWHT conditions on the microstructure and mechanical properties. Before PWHT, CGHAZ and FGFGHAZ showed high yield strength (YS) ranging from 1000 to 1250 MPa, while YS of SCSCHAZ decreased from 607 MPa (observed for base metal) to 501 MPa. The Charpy impact energies of sub-HAZs fell below 100J at $-29^{\circ}C$, except in the SCSCHAZ. By applying PWHT to sub-HAZ specimens, YS decreased as the PWHT temperature increased. In the case of CGHAZs and FGFGHAZ heat-treated at $610^{\circ}C$, YS dropped drastically to the range of 654~686 MPa. From the Charpy impact test, the upper-shelf energy (USE) increased to approximately 250J and Index temperature ($T_{68J}$) decreased below $-50^{\circ}C$. Specifically, in FGFG, ICIC and SCSC-HAZ, $T_{68J}$ was below -110, which was lower than the case of base metal.