• Title/Summary/Keyword: Post Flames

Search Result 13, Processing Time 0.025 seconds

Combustion Characteristics of Ionized Fuels for Battery System Safety (배터리 시스템 안전을 위한 이온화 연료의 연소 특성)

  • Ko, Hyeok Ju;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • Many electronic devices are powered by various rechargeable batteries such as lithium-ion recently, and occasionally the batteries undergo thermal runaway and cause fire, explosion, and other hazards. If a battery fire should occur in an electronic device of vehicle and aircraft cabin, it is important to quickly extinguish the fire and cool the batteries to minimize safety risks. Attempts to minimize these risks have been carried out by many researchers but the results have been still unsatisfied. Because most rechargeable batteries are operated on the ion state during charge and discharge of electricity and the combustion of ion state has big difference with normal combustion. Here we focused on the effect of ions including an electron during combustion process. The effects of an ionized fuel on the flame stability and the combustion products were experimentally investigated in the propane jet diffusion flames. The burner used in this experiment consisted of 7.5 mm diameter tube for fuel and the propane was ionized with th ionizer (SUNJE, SPN-11). The results show that toe overall flame stability and shape such as flame length has no significant difference even in the higher ion concentration. However the fuel ionization affects to the pollutant emissions such as NOx and soot. NOx and CO emissions measured in post flame region decreased by fuel ionization, especially high fuel velocity, i.e. high ion density. TGA analysis and morphology of soot by TEM indicates that the fuel ionization makes soot to be matured.

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.