• Title/Summary/Keyword: Positron-emission tomography

Search Result 597, Processing Time 0.026 seconds

A Case of Pulmonary Paragonimiasis Presented as Solitary Pulmonary Nodule and Suspected as Lung Cancer on 18F-Fluorodeoxyglucose Positron Emission Tomography (양전자 방출 단층촬영에서 폐암으로 의심되었던 고립 폐 결절 형태의 폐흡충증 1예)

  • Moon, Jae Young;Jung, Ki Hwan;Kim, Je Hyeong;Park, Hyung Joo;Kim, Young Sik;Shin, Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.2
    • /
    • pp.133-137
    • /
    • 2008
  • Pulmonary paragonimiasis continues to be a diagnostically challenging parasitic disease, despite a drastically decreased prevalence in South Korea during the past decade. Pulmonary paragonimiasis is characterized by fever, chest pain, and chronic cough with hemoptysis. Numerous radiographic and computed tomographic findings including the presence of pneumothorax, pleural effusion, and parenchymal lesions such as nodular or infiltrative opacities have been reported. The clinical and radiological manifestations of paragonimiasis can resemble those of lung cancer, tuberculosis or a metastatic malignancy. Furthermore, this disease can mimic lung cancer as seen on $^{18}F$-fluorodeoxyglucose positron emission tomography (FDG-PET). We report a case of pulmonary paragonimiasis in a 48-year old man that presented with a solitary pulmonary nodule and was suspected as a lung cancer based on FDG-PET imaging.

The Role of $^{18}F$-Fluorodeoxyglucose Positron Emission Tomography in the Treatment of Brain Abscess

  • Park, Seong-Hyun;Lee, Sang-Woo;Kang, Dong-Hun;Hwang, Jeong-Hyun;Sung, Joo-Kyung;Hwang, Sung-Kyoo
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.5
    • /
    • pp.278-283
    • /
    • 2011
  • Objective : The purpose of this study was to evaluate whether $^{18}F$-fluorodeoxyglucose positron emission tomography (FOG-PET) can be used to assess the therapeutic response of brain abscess. Methods : A study was conducted on 10 consecutive patients with brain abscess, Magnetic resonance imaging (MRI) with diffuse-weighted imaging (DWI) was performed at 3 and 6 weeks after surgical treatment and intravenous antibiotics therapy and FOG-PET at 6 weeks after treatment. The extent of the abscess, signal changes on MRI, and FOG-PET standardized uptake values were analyzed and correlated with the response to therapy. Results : Aspiration or craniotomy with excision of the abscess followed by intravenous antibiotics for 6-8 weeks resulted in good recovery with no recurrence. In 10 patients, two had low signal intensity on the DWI; one had no uptake on FOG-PET imaging after 6 weeks antibiotics and discontinued intravenous treatment, but the other patient had diffuse, increased uptake on FOG-PET imaging after 6 weeks antibiotics and underwent an additional 2 weeks of intravenous antibiotics. The remaining eight patients had high signals on the DWI. Four had no uptake on FOG-PET imaging and the treatment period varied from 6 to 8 weeks (mean, 6.75 weeks). Among the other four patients, FOG was accumulated in a diffuse or local area corresponding to a high signal area within the DWI and 2 weeks of intravenous antibiotics was added. Conclusion : MRI plus FOG-PET improved the accuracy of assessing therapeutic responses to antibiotics treatment of brain abscess and aided in optimizing therapy.

Fluorodeoxyglucose positron-emission tomography ratio in non-small cell lung cancer patients treated with definitive radiotherapy

  • Kang, Hyun-Cheol;Wu, Hong-Gyun;Yu, Tosol;Kim, Hak Jae;Paeng, Jin Chul
    • Radiation Oncology Journal
    • /
    • v.31 no.3
    • /
    • pp.111-117
    • /
    • 2013
  • Purpose: To determine whether the maximum standardized uptake value (SUV) of [$^{18}F$] fluorodeoxyglucose uptake by positron emission tomography (FDG PET) ratio of lymph node to primary tumor (mSUVR) could be a prognostic factor for node positive non-small cell lung cancer (NSCLC) patients treated with definitive radiotherapy (RT). Materials and Methods: A total of 68 NSCLC T1-4, N1-3, M0 patients underwent FDG PET before RT. Optimal cutoff values of mSUVR were chosen based on overall survival (OS). Independent prognosticators were identified by Cox regression analysis. Results: The most significant cutoff value for mSUVR was 0.9 with respect to OS. Two-year OS was 17% for patients with mSUVR > 0.9 and 49% for those with mSUVR ${\leq}0.9$ (p = 0.01). In a multivariate analysis, including age, performance status, stage, use of chemotherapy, and mSUVR, only performance status (p = 0.05) and mSUVR > 0.9 (p = 0.05) were significant predictors of OS. Two-year OS for patients with both good performance (Eastern Cooperative Oncology Group [ECOG] ${\leq}1$) and mSUVR ${\leq}0.9$ was significantly better than that for patients with either poor performance (ECOG > 1) or mSUVR > 0.9, 23% (71% vs. 23%, p = 0.04). Conclusion: Our results suggested that the mSUVR was a strong prognostic factor among patients with lymph node positive NSCLC following RT. Addition of mSUVR to performance status identifies a subgroup at highest risk for death after RT.

Recent Update of Advanced Imaging for Diagnosis of Cardiac Sarcoidosis: Based on the Findings of Cardiac Magnetic Resonance Imaging and Positron Emission Tomography

  • Chang, Suyon;Lee, Won Woo;Chun, Eun Ju
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.100-113
    • /
    • 2019
  • Sarcoidosis is a multisystem disease characterized by noncaseating granulomas. Cardiac involvement is known to have poor prognosis because it can manifest as a serious condition such as the conduction abnormality, heart failure, ventricular arrhythmia, or sudden cardiac death. Although early diagnosis and early treatment is critical to improve patient prognosis, the diagnosis of CS is challenging in most cases. Diagnosis usually relies on endomyocardial biopsy (EMB), but its diagnostic yield is low due to the incidence of patchy myocardial involvement. Guidelines for the diagnosis of CS recommend a combination of clinical, electrocardiographic, and imaging findings from various modalities, if EMB cannot confirm the diagnosis. Especially, the role of advanced imaging such as cardiac magnetic resonance (CMR) imaging and positron emission tomography (PET), has shown to be important not only for the diagnosis, but also for monitoring treatment response and prognostication. CMR can evaluate cardiac function and fibrotic scar with good specificity. Late gadolinium enhancement (LGE) in CMR shows a distinctive enhancement pattern for each disease, which may be useful for differential diagnosis of CS from other similar diseases. Effectively, T1 or T2 mapping techniques can be also used for early recognition of CS. In the meantime, PET can detect and quantify metabolic activity and can be used to monitor treatment response. Recently, the use of a hybrid CMR-PET has introduced to allow identify patients with active CS with excellent co-localization and better diagnostic accuracy than CMR or PET alone. However, CS may show various findings with a wide spectrum, therefore, radiologists should consider the possible differential diagnosis of CS including myocarditis, dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy, amyloidosis, and arrhythmogenic right ventricular cardiomyopathy. Radiologists should recognize the differences in various diseases that show the characteristics of mimicking CS, and try to get an accurate diagnosis of CS.

Software Development for Dynamic Positron Emission Tomography : Dynamic Image Analysis (DIA) Tool (동적 양전자방출단층 영상 분석을 위한 소프트웨어 개발: DIA Tool)

  • Pyeon, Do-Yeong;Kim, Jung-Su;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.369-376
    • /
    • 2016
  • Positron Emission Tomography(PET) is nuclear medical tests which is a combination of several compounds with a radioactive isotope that can be injected into body to quantitatively measure the metabolic rate (in the body). Especially, Phenomena that increase (sing) glucose metabolism in cancer tissue using the $^{18}F$-FDG (Fluorodeoxyglucose) is utilized widely in cancer diagnosis. And then, Numerous studies have been reported that incidence seems high availability even in the modern diagnosis of dementia and Parkinson's (disease) in brain disease. When using a dynamic PET iamge including the time information in the static information that is provided for the diagnosis many can increase the accuracy of diagnosis. For this reason, clinical researchers getting great attention but, it is the lack of tools to conduct research. And, it interfered complex mathematical algorithm and programming skills for activation of research. In this study, in order to easy to use and enable research dPET, we developed the software based graphic user interface(GUI). In the future, by many clinical researcher using DIA-Tool is expected to be of great help to dPET research.

A Pulmonary Paragonimiasis Case Mimicking Metastatic Pulmonary Tumor

  • Kim, Ki-Uk;Lee, Kwang-Ha;Park, Hye-Kyung;Jeong, Yeon-Joo;Yu, Hak-Sun;Lee, Min-Ki
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.1
    • /
    • pp.69-72
    • /
    • 2011
  • Pulmonary paragonimiasis is a relatively rare cause of lung disease revealing a wide variety of radiologic findings, such as air-space consolidation, nodules, and cysts. We describe here a case of pulmonary paragonimiasis in a 27-year-old woman who presented with a 2-month history of cough and sputum. Based on chest computed tomography (CT) scans and fluorodeoxyglucose positron emission tomography (FDG-PET) findings, the patient was suspected to have a metastatic lung tumor. However, she was diagnosed as having Paragonimus westermani infection by an immunoserological examination using ELISA. Follow-up chest X-ray and CT scans after chemotherapy with praziquantel showed an obvious improvement. There have been several reported cases of pulmonary paragonimiasis mimicking lung tumors on FDG-PET. However, all of them were suspected as primary lung tumors. To our knowledge, this patient represents the first case of paragonimiasis mimicking metastatic lung disease on FDG-PET CT imaging.

Intra-abdominal Kikuchi's Disease Mimicking Malignant Lymphoma on FDG PET-CT (FDG PET-CT에서 악성림프종처럼 보이는 복부 기쿠치병)

  • Han, Hye-Suk;Kim, Gi-Hyun;Cho, Young-Shim;Joo, Hye-Jin;Lee, Ok-Jun;Ryu, Dong-Hee;Lee, Ki-Hyeong;Kim, Seung-Taik
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.363-365
    • /
    • 2009
  • Kikuchi's disease is a self-limiting benign disease characterized by cervical lymphadenopathy, but it can be mistaken for malignant disease, and when involved lymph nodes are unusually located, diagnosis can be more difficult. The authors report the case of a 19-year-old man with Kikuchi's disease, who had isolated intra-abdominal lymphadenopathy and increased 18-fluoro-deoxyglucose (FDG) uptake in positron emission tomography-computed tomography (PET-CT). Although its incidence is extremely rare, intra-abdominal Kikuchi's disease with increased FDG uptake in PET-CT image should be considered in the differential diagnosis when constitutional symptoms mimic those of malignant lymphoma.