• Title/Summary/Keyword: Positron

Search Result 697, Processing Time 0.044 seconds

Simulation of Energy Resolution of Time of Flight System for Measuring Positron-annihilation induced Auger Electrons (양전자 소멸 Auger 전자 에너지 측정을 위한 Time of Flight의 분해도 향상에 관한 이론적 연구)

  • Kim, J.H.;Yang, T.K.;Lee, C.Y.;Lee, B.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • Since the presence of the chemical impurities and defect at surfaces and interfaces greatly influence the properties of various semiconductor devices, an unambiguous chemical characterization of the metal and semiconductor surfaces become more important in the view of the miniaturization of the devices toward nano scale. Among the various conventional surface characterization tools, Electron-induced Auger Electron Spectroscopy (EAES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Electron Ion Mass Spectroscopy (SIMS) are being used for the identification of the surface chemical impurities. Recently, a novel surface characterizaion technique, Positron-annihilation induced Auger Electron Spectroscopy (PAES) is introduced to provide a unique method for the analysis of the elemental composition of the top-most atomic layer. In PAES, monoenergetic positron of a few eV are implanted to the surface under study and these positrons become thermalized near the surface. A fraction of the thermalized positron trapped at the surface state annihilate with the neighboring core-level electrons, creating core-hole excitations, which initiate the Auger process with the emission of Auger electrons almost simultaneously with the emission of annihilating gamma-rays. The energy of electrons is generally determined by employing ExB energy selector, which shows a poor resolution of $6{\sim}10eV$. In this paper, time-of-flight system is employed to measure the electrons energy with an enhanced energy resolution. The experimental result is compared with simulation results in the case of both linear (with retarding tube) and reflected TOF systems.

The Efficacy of Detecting a Sentinel Lymph Node through Positron Emission Tomography/Computed Tomography (근골격계 악성 종양 환자의 림프절 전이 발견을 위한 양전자 방출 컴퓨터 단층 촬영기(Positron Emission Tomography/Computed Tomography)의 유용성)

  • Shin, Duk-Seop;Na, Ho Dong;Park, Jae Woo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.6
    • /
    • pp.509-518
    • /
    • 2019
  • Purpose: Lymph node metastasis is a very important prognostic factor for all skin cancers and some sarcomas. A sentinel lymph node (SLN) biopsy is the most useful technique for identifying SLNs. Recently, a new generation of diagnostic tools, such as single photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/CT (PET/CT) enabled the detection of SLNs. This study compared the efficacy of PET/CT for detecting lymph node metastases with a SLN biopsy in a single medical center. Materials and Methods: From 2008 to 2018, 72 skin cancers of sarcoma patients diagnosed with some lymph node involvement in a whole body PET/CT reading were assessed. Patients suspected of lymph node metastasis were sent to biopsy and those suspected to be reactive lesions were observed. The analysis was performed retrospectively using the medical records, clinical information, PET/CT readings, and pathology results. Results: The age of patients ranged from 14 to 88 years and the mean follow-up period was 2.4 years. Twenty-two patients were suspected of a lymph node metastasis and confirmed. The sensitivity, specificity, positive predictive value and negative predictive value of PET/CT images in sarcoma and non-sarcoma tumors were increased significantly when the expert's findings were considered together. Conclusion: PET/CT is effective in detecting lymph node metastases.

Effect of Gamma Energy of Positron Emission Radionuclide on X-Ray CT Image (양전자 방출 핵종(18F)의 감마에너지가 X선 CT영상에 미치는 영향)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Kim, Ki-Jin;Oh, Hye-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4418-4424
    • /
    • 2011
  • This study is aimed to assess the effect of the gamma ray of 511keV energy which is emitted from phantom where the positron emission radionuclide was injected on X-ray CT image. As a scanning method, the CT number and pixel value of the reference image where water was injected(0 mCi), and those acquired by changing the capacity of 18F(Fluorine), positron emission radionuclide, into 1 mCi, 2 mCi, 5 mCi, and 10 mCi were measured. As a result of measuring the CT number(HU) of the phantom image where the positron emission radionuclide($^{18}F$) was injected, there were reference water ($-7.58{\pm}0.66$ HU), 1 mCi($-9.85{\pm}0.50$ HU), 2 mCi($-10.27{\pm}0.21$ HU), 5 mCi($-11.31{\pm}0.66$ HU), and 10 mCi($-13.47{\pm}0.38$ HU). Compared with the image where it was filled with water, there was a reduction of 5.89 Hu in 10 mCi, 3.73 in 5 mCi, 2.69 HU in 2 mCi, and 2 HU in 1 mCi. As for the pixel value of the phantom image, there were reference water ($-2.70{\pm}0.75$), 1 mCi($-4.72{\pm}0.58$), 2 mCi($-6.01{\pm}0.78$), 5 mCi($-6.10{\pm}0.84$), and 10 mCi($-8.20{\pm}0.60$). Compared with the reference image, there was a reduction of 5.50 in 10 mCi, 3.40 in 5 mCi, 3.10 in 2 mCi, and 2.02 in 1 mCi. Through this experiment, it was indicated that, with the increase in the dose of the positron emission radionuclide($^{18}F$), the CT number and the pixel value of the image reduced proportionally, and the width of reduction showed a similar value, too. Accordingly, according to the degree of change in X-ray CT image due to the positron emission radionuclide in the quality control item of PET/CT, the proper standard should be established and it should be periodically managed.