• 제목/요약/키워드: Positive Temperature Coefficient

검색결과 296건 처리시간 0.022초

$\beta$-Sic-$ZrB_2$계 복합체에 미치는 YAG의 영향 (Effect of YAG on $\beta$-Sic-$ZrB_2$ Composites)

  • 황철;주진영;신용덕;이종덕;진홍범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1474-1476
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$ZrB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $ZrB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_{3}$ contents. The flexural strength showed the highest value of 390.6MPa for composites added with 20wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. Owing to crack deflection, crack bridging. phase transition and YAG of fracture toughness mechanism. the fracture toughness showed the highest value of 6.3MPa${\cdot}m^{1/2}$ for composites added with 24wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance (PTCR) in the temperature range of 25$^{\circ}C$ to 900$^{\circ}C$.

  • PDF

전자뜸의 시스템 오류에 의한 열폭주 모델 구현 및 해결 방법에 관한 실험적 연구 (An Experimental Study on the Development and Possible Solution of Thermal Runaway Model of Electronic Moxibustion with System Error)

  • 이병욱;오용택;장한솔;최성경;조효림;성원석;김은정
    • Korean Journal of Acupuncture
    • /
    • 제38권4호
    • /
    • pp.282-289
    • /
    • 2021
  • Objectives : The purpose of this study is to construct a model of the possible thermal runaway of electronic moxibustion and to implement an appropriate risk management method. Methods : To reproduce the system error situation of the electronic moxibustion circuit equipped with microcontroller unit, temperature sensor and heater, a code was set to disable the signal input to temperature sensor and maintain "high" heating signal to heater. The temperature change of electronic moxibustion was compared between 3 types of heater module; module 1 consisting of a combination of heater+0 ohm+0 ohm resistance, module 2 consisting of a combination of heater+Polymeric Positive Temperature Coefficient (PPTC)+0 ohm resistance, and module 3 consisting of a combination of heater+PPTC+10 ohm resistance. The temperature change was measured using a polydimethylsiloxane (PDMS) silicone phantom. After maintaining surface temperature of the phantom at 31~32℃ for 20 seconds, electronic moxibustion was applied. After operating electronic moxibustion, the temperature change was measured for 660 seconds on the surface and 900 seconds at 2 mm depth. Results : Regardless of the module type, the time-dependent change in temperature showed a rapid rise followed by a gentle curve, and a sharp drop in temperature after reaching the maximum temperature about 10 minutes after the switching the moxibustion on. Temperature measured at the depth of 2 mm below the surface increased slower and to a lesser extent. Module 1 reached highest peak temperature with largest change of temperature at both depths followed by module 2, and 3. Conclusions : Through the combination of PPTC+resistance with the heater of electronic moxibustion, it is possible to limit the rise in temperature even with the software error. Thus, this setting can be used as an independent safety measure for the electronic moxibustion control unit.

서울시 수도수의 이화학적 수질조사 (An Experimental Study on the Chemical Values of the Tap Water in Seoul)

  • 홍태용
    • 한국환경보건학회지
    • /
    • 제7권1호
    • /
    • pp.21-31
    • /
    • 1981
  • This survey was carried out to investigate the temperature, pH value, nitrogen (ammonia, nitrite, nitrate), turbidity, color, chloride ion, $KMnO_4$ consumed, and hardness as chemical analysis of the tap water in Seoul city area during the period from September to Octobor, 1979, and to observe the differences among the values by the distance from the water purification plant and by the district supplied tap water from-the each water purification plant. The results obtained were as follows: 1) An average of the water temperature was $19.8\pm 0.2\circ$C. 2) An average of pH was $7.18\pm 0.02$. The difference among each district was statistically significant (p<0.01), but it was not observed among each distance. 3) An average of turbidity was $1.25\pm 0.12$ ppm. The difference among each district was highly significant (p<0.01), respectively, but not among each distance. 4) An average of color was $1.43\pm 0.16$ ppm, and there were statistically significant differences by the distance and by the district (p<0.01). 5) An average of ammonia nitrogen was $0.022\pm 0.005$ ppm. The differences among each distance, and district were statistically significant (P<0.01). 6) An average of nitrite nitrogen was $0.0050\pm 0.0013$ ppm, and the difference among each distance was highly significant (p<0.01), respectively, and each district showed statistical significance (p<0.01). 7) An average of nitrate nitrogen was $0.82\pm 0.08$ ppm. The difference among each district was significant (p<0.05), and each distance showed high significance (p<0.01). 8) An average of $KMnO_4$ consumed was $3.73\pm 0.16$ ppm, and the difference among each district was significant (p<0.05), but it was not observed among each distance. 9) An average of chloride ion was $8.56\pm 0.28$ ppm, and the difference among each district was higly significant (p<0.01), respectively, but it was not observed among each distance. 10) An average of hardness was $40.69\pm 1.17$ ppm, and there was statistically significant difference by each district (P<0.01), but not by distance. 11) The interrelation between temperature and pH of the tap water revealed the negative correlation from the coefficient of it as showed r=-0.6073 and p<0.01. 12) Except water temperature, there were negative correlationships between pH and other water qualities. 13) Correlation coefficients of $KMnO_4$ comsumed and ammonia nitrogen, nitrite nitrogen were statistically significant but that of $KMnO_4$ consumed and nitrate nitrogen showed no statistical correlationship. 14) Ammonia nitrogen seems to have high correlationship with nitrite nitrogen(r= +0.6669), but not with nitrate nitrogen. 15) Nitrate nitrogen seems to have statistically significant correlationship with nitrite nitrogen (r=+0.4959), but not with ammonia nitrogen. 16) The interrelation between chloride ion and hardness of the tap water revealed positive correlation from the coefficient of it as showed as r=+0.4888 and p<0.01.

  • PDF

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.

매설용 전기 발열 매시의 융설 효과에 대한 현장 적용성 연구 (A Study on Field Applicability of Underground Electric Heating Mesh)

  • 서영찬;서병석;송중곤;조남현
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.19-27
    • /
    • 2013
  • PURPOSES : This study aims to investigate the snow-melt effects of an underground electric heater's snow-melt system via a field performance test, for evaluating the suitability of the system for use on a concrete pavement. The study also investigates the effectiveness of dynamic measures for clearing snow after snowfall events. METHODS : In order to check the field applicability, in November 2010, specimens were prepared from materials used for constructing concrete pavements, and underground electric heating meshes (HOT-mesh) were buried at depths of 50 mm and 100 mm at the site of the Incheon International Airport Construction Research Institute. Further, an automatic heating control system, including a motion sensor and pavement-temperature-controlled sensor, were installed at the site; the former sensor was intended for determining snow-melt effects of the heating control system for different snowfall intensities. Pavement snow-melt effects on snowy days from December 2010 to January 2011 were examined by managing the electric heating meshes and the heating control system. In addition, data on pavement temperature changes resulting from the use of the heating meshes and heating control system and on the dependence of the correlation between the outdoor air temperature and the time taken for the required temperature rise on the depth of the heating meshes were collected and analyzed. RESULTS : The effects of the heating control system's preheat temperature and the hot meshes buried at depths of 50 mm and 100 mm on the melting of snow for snowfalls of different intensities have been verified. From the study of the time taken for the specimen's surface temperature to increase from the preheat temperature ($0^{\circ}C$) to the reference temperature ($5{\sim}8^{\circ}C$) for different snowfall intensities, the correlation between the burial depth and outdoor air temperature has been determined to be as follows: Time=15.10+1.141Depth-6.465Temp CONCLUSIONS : The following measures are suggested. For the effective use of the electric heating mesh, it should be located under a slab it may be put to practical use by positioning it under a slab. From the management aspect, the heating control system should be adjusted according to weather conditions, that is, the snowfall intensity.

액장 소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성 (Properties and Manufacture of the $\beta-SiC-ZrB_2$ Composited Densified by Liquid-Phase Sintering.)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.92-97
    • /
    • 1999
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta-Sic$+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3(6:4wt%)$. In this microstructures, no reactions and elongated $\alpha$-SiC grains with equiaxed $ZrB_2$, gains were observed between $\beta-SiC$ and $ZrB_2$, and the relative density was over 97.6% of the theoretical density. Phase analysis of the composites by XRD revealedmostly of $\alpha$-SiC(6H, 4H), $ZrB_2$, and weakly $\beta-SiC$(15R) phase. The fracture toughness decreased with increasing $Al_2O_3+Y_2O_3$ contents and showed the highest of $6.37MPa.m^{\fraction ane-half}$ for composite added with 4wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity increased with increasing $Al_2O_3+Y_2O_3$contents and showed the lowest of $1.51\times10^{-4}\Omega.cm$ for composite added with $Al_2O_3+Y_2O_3$ additives at $25^{\circ}C$. This reason is the increasing tendency of pore formation according to amount of liquid forming additives $Al_2O_3+Y_2O_3$. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

이트륨 혼입량 변화에 따른 $(Ba,Sr)_{1-x}Y_xTiO_3$의 전기적 특성 (Electrical Properties of $(Ba,Sr)_{1-x}Y_xTiO_3$ with Variation of Yttrium Content)

  • 노태용;성현제;김승원;이철
    • 대한화학회지
    • /
    • 제39권10호
    • /
    • pp.806-811
    • /
    • 1995
  • 정온도저항계수(PTCR) 특성을 지닌 $(Ba,Sr)_{1-x}Y_xTiO_3$(x = 0.001-0.009, BSYT)를 옥살산공침범으로 합성하여 이트륨 혼입량 변화에 따른 전기적 특성을 관찰하였다. 온도변화에 따른 저항을 측정한 결과 이트륨의 농도가 0.3mol%로 증가할때까지는 큰 PTCR 효과를 나타낸 반면 농도가 0.5mol% 이상에서는 적은 PTCR 효과를 나타내었다. 상전이 온도($T_c$) 이상에서 온도와 $1{\varepsilon}$m(T)의 관계를 나타낸 도시에 의하면 유전상수의 변화가 Curie-Wiess 법칙에 잘 따름을 알 수 있었다. 측정한 비저항과 유전상수로부터 계산한 전위장벽위 높이를 온도에 따라 도시한 결과 PTCR 효과와 마찬가지로 이트륨의 혼입량이 0.3mol%로 증가할때까지는 높은 전위장벽이 유지되나 0.5mol% 이상에서는 비교적 낮은 전위장벽을 나타내었다.

  • PDF

전기자동차용 히트펌프의 열 부하 조건에 따른 캐빈온도 특성 (Characteristic of Cabin Temperature According to Thermal Load Condition of Heat Pump for Electric Vehicle)

  • 박지수;한재영;김성수;유상석
    • 대한기계학회논문집B
    • /
    • 제40권2호
    • /
    • pp.85-91
    • /
    • 2016
  • 내연기관 자동차와 달리 전기자동차는 배터리 폐열이 부족하여 실내 난방을 위해 추가적으로 PTC 히터를 사용하고 있지만 전력소모가 큰 단점이 있다. 최근 이러한 단점을 보완할 수 있는 히트펌프 적용에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 히트펌프의 운전특성 해석을 위해 MATLAB/SIMULINK$^{(R)}$환경에서 R134a 히트펌프 모델과 캐빈 모델을 개발하였다. 모델은 여름과 겨울에서 히트펌프의 작동 특성에 따른 실내 온도변화를 나타낼 수 있으며, 모델 검증은 구성품 수준에서 응축기와 증발기의 용량 비교를 수행하였다. 또한 동일한 냉방조건에서 캐빈온도 변화 비교를 통해 캐빈 모델을 검증하였다. 해석 결과 전동압축기 소비전력은 모든 외기온도 조건에서 PTC 히터 보다 낮은 것으로 나타났다. 또한 영하조건에서 히트펌프의 난방용량이 부족한 현상에 대해 폐열회수를 적용하여 효율적인 난방 작동을 할 수 있는 조건을 분석하였다.

상압소결에 의해 제조한 $\beta$-Sic+39vol.%$ZrB_2$ 복합체의 특성 (Properties of the $\beta$-Sic+39vol.%$ZrB_2$ Composites Prepared by the Pressureless-Sintering)

  • 신용덕;주진영;윤세원;황철;임승혁;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.894-896
    • /
    • 1999
  • The $\beta$-SiC+$ZrB_2$ ceramic composites were pressureless-sintered and annealed by adding 4, 8, 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$(6 : 4wt%) powder as a liquid forming additives at $1800^{\circ}C$ for 4h. The relative density is over 79.3% of the theoretical density and phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H, 4H), $ZrB_2$, $Al_{5}Y_{2}O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 301.33MPa for composites added with 8wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of $3.6979MPa{\cdot}m^{1/2}$ for composites added with 8wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives at room temperature. The electrical resistivity was measured by the Pauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).

  • PDF

균일침전법으로 제조된 란탄이 혼입된 $BaTiO_3$의 전기적 특성 (Electrical properties of La-doped BaTiO3 synthesized by homogeneous precipitation)

  • 허우영;류경열;김승원;이철
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.498-503
    • /
    • 1999
  • La가 혼입된 $BaTiO_3$를 균일침전법으로 제조하여 La의 혼입량 및 입자의 크기 변화에 따른 전기적 특성을 관찰하였다. 온도변화에 따른 저항을 측정한 결과 란탄의 농도가 0.6 mol%일 때 그리고 입자의 크기가 1.0 $\mu\textrm{m}$으로 작을 때 가장 큰 PTCR 효과를 나타내었다. 상전이온도($(T_c)$) 이상에서 온도와 1/$\varepsilon_m$(T)의 관계를 나타낸 도시에 의하면 유전상수의 변화가 Curie-weiss 법칙에 잘 다름을 알 수 있었다. 측정한 비저항과 유전상수로부터 계산한 전위장벽의 높이도 란탄의 농도가 0.6 mol%일 때 입자의 크기가 1.0$\mu\textrm{m}$으로 작을 때 가장 큰 전위장벽을 나타내었다.

  • PDF