• Title/Summary/Keyword: Positioning device

Search Result 333, Processing Time 0.022 seconds

Development of a Garlic Clove Planter (II) - Design factors for a garlic clove planter - (마늘파종기 개발에 관한 연구 (II) - 마늘파종기의 설계요인 -)

  • 박원규;최덕규;김영근
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.547-556
    • /
    • 2002
  • Upright positioning of garlic cloves in mechanical planting has been considered as an essential process because pose of garlic affects not only initial budding and rooting of garlics but quality and yield. Due to the geometrical uniqueness and irregularity of garlic cloves in shape, manual planting operation has been conducted. The overall objective of this research was to determine design factors for designing a garlic clove planter The results are summarized as follows : 1. A vibrating-type clove-metering device was designed and tested. Effects of tilted angle of metering plate and magnitude of vibration on metering performance were investigated. The successful planting rates of the metering device were 96.7% for Hanji varieties. 2. Clove upright-positioning device, posture inducer was designed and tested. When the clearance between the hoppers was set at 4mm, the rates of upright positioning of the device were 92.2% for with Hanji varieties. 3. Optimum metering performance was observed at the plate tilted angle of 80。 with the posture type positioning device.

DEVELOPMENT OF A GARLIC CLOVE PLANTER

  • Park, W.K.;Kim, Y.K.;Choi, D.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.438-445
    • /
    • 2000
  • Positioning garlic cloves in upright standing in garlic field has been regarded as a very important job because it affects clove rooting, growing and, eventually, quality and yield in garlic production, Because of the geometrical uniqueness and irregularity of garlic cloves in shape, the planting operation has been conducted by manual work that needs a tremendous human labors and increases garlic production cost. The overall objective of this research was to develop garlic planting machine through investigating physical properties of garlic and designing clove upright positioning device after figuring out the factors affecting metering device and upright clove positioning mechanism. With the outcomes of the metering and posture positioning experiment, a garlic clove planter having twelve planting rows was developed for 37kW type tractor and feasibility test was carried out in the field. And, According to the performance test and cost analysis, the planter could accomplish planting operation of one hectare plot in 6.3 hours giving 48 times better efficiency, 6.3hrs/ha, and 74.2% of production cost reduction effect, 1,092,546won/ha, than the manual works of 299hrs/ha and 282,258won/ha. And, break-even point ofthe planter was calculated as of 2.71 hectares.

  • PDF

Position control of the frictionless positioning device suspended by cone-shaped active magnetic bearings (원추형 자기 베어링 지지 무마찰 구동장치의 위치제어)

  • Jeong, Ho-Seop;Lee, Chong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • A frictionless positioning device using cone-shaped active magnetic bearings(AMBs) is developed, which is driven by a brushless DC motor equipped with resolver. The cone-shaped AMB feature that the structure is simple and yet the five d.o.f. rotor motion is controlled by four magnet pairs. A linearized dynamic model, which accounts for the relationship between input voltage and output current in the cone-shaped magnet, is developed and the azimuth motion of the frictionless positioning device is modeled as the second order system. The feedback controller is designed by using linear quadratic regulator with integral action optimal control law so that the cone-shaped AMB system is stabilized and the frictionless positioning device gets the zero steady state. It is observed that the linearized dynamic model is adequate and the frictionless positioning device can achieve the tracking accuracy within the sensor resolution.

  • PDF

Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides (제작방법에 따른 임플란트 수술 가이드의 정확성비교: stereolithography와 positioning device로 제작한 수술 가이드)

  • Kwon, Chang-Ryeol;Choi, Byung-Ho;Jeong, Seung-Mi;Joo, Sang-Dong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Purpose: Recently implant surgical guides were used for accurate and atraumatic operation. In this study, the accuracy of two different types of surgical guides, positioning device fabricated and stereolithography fabricated surgical guides, were evaluated in four different types of tooth loss models. Materials and methods: Surgical guides were fabricated with stereolithography and positioning device respectively. Implants were placed on 40 models using the two different types of surgical guides. The fitness of the surgical guides was evaluated by measuring the gap between the surgical guide and the model. The accuracy of surgical guide was evaluated on a pre- and post-surgical CT image fusion. Results: The gap between the surgical guide and the model was $1.4{\pm}0.3mm$ and $0.4{\pm}0.3mm$ for the stereolithography and positioning device surgical guide, respectively. The stereolithography showed mesiodistal angular deviation of $3.9{\pm}1.6^{\circ}$, buccolingual angular deviation of $2.7{\pm}1.5^{\circ}$ and vertical deviation of $1.9{\pm}0.9mm$, whereas the positioning device showed mesiodistal angular deviation of $0.7{\pm}0.3^{\circ}$, buccolingual angular deviation of $0.3{\pm}0.2^{\circ}$ and vertical deviation of $0.4{\pm}0.2mm$. The differences were statistically significant between the two groups (P<.05). Conclusion: The laboratory fabricated surgical guides using a positioning device allow implant placement more accurately than the stereolithography surgical guides in dental clinic.

Bluetooth AoA based Positioning Scheme using Angle and Distance Validation Test (각도 및 거리 유효성 검사를 적용한 블루투스 도래각 기반의 측위 방식)

  • Song, Kyounghee;Paik, Junghoon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.790-798
    • /
    • 2021
  • In this paper, we propose a method to improve the accuracy of positioning by adding angle and distance validation to the existing Bluetooth-based positioning method using the angle of arrival. In the existing positioning method, an error occurs in the positioning value due to a multipath phenomenon induced in a non-visible distance environment. The proposed method derives the maximum and minimum angles of arrival that can be measured in consideration of the moving speed of the positioned device, and then examines whether the measured angle of arrival exceeds the range of the maximum and minimum angles of arrival. The accuracy of positioning is improved by conducting a distance validation check to see if the location of the device to be positioned and the distance to the positioning device exceed the effective distance. A simulation was conducted to analyze the positioning performance between the proposed method and the existing method, and it was confirmed that the positioning performance was improved through angle and distance validation compared to the existing method in a situation where the positioning error increased through the simulation results.

A Study on Three Degree-of-Freedom Fine Positioning Device Based on Electromagnetic Force (전자기력을 이용한 3 자유도 정밀 위치결정기구에 관한 연구)

  • 이기하;최기봉;박기환;김수현;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.199-207
    • /
    • 1998
  • This paper presents the design and the control of three degree-of-freedom(DOF) fine positioning device based on an electro-magnetic force. The device is designed by use of a magnetic circuit theory and it is capable of fine motion due to the electro-magnetic force. The device consists of permanent magnets, yokes and coils. The magnetic fluxes generated from the permanent magnets constitute magnetic paths through steel, whereas the coils are arranged into the gap between two surfaces of the yokes. Therefore, by supplying current to the coils, the coils are capable of some motions due to Lorentz forces. For the optimal design of the actuating system, the system parameters are defined and investigated under the given constraints. From the system modeling in small displacement, three decoupled equations of motion are obtained. To get better performance of the system, a PID controller is implemented. Experimental results are presented in terms of time response and accuracy.

  • PDF

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

Feasibility Study of Positioning Device Using Magnetic Suspension System of Out of Plane Direction Forces (면외 방향의 자기력을 이용한 자기 서스펜션 시스템의 위치결정기구로의 적용 가능성)

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1941-1948
    • /
    • 2003
  • This paper is about feasibility study of positioning device using magnetic suspension system which uses only vertical magnetic forces. The proposed system has inherited advantages from contact-free system, simple structure, and high expansibility in operating range different from conventional positioning devices. In this paper, the structure and operating principle are described and the linearized magnetic force and dynamic model are obtained. With the linear control theory, the experiments are executed. finally, the experimental results are shown.

CRANIUM-ORIENTED MAXILA AND CONDYLE POSITIONING DEVICE (두개골에 기준을 둔 상악 및 과두 고정용 장치)

  • Lee, Won-Hak;Hong, Kwang-Jin;Lee, Jeong-Gu;Sohn, Hong-Bum;Cho, Yun-Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1999
  • Special attention should be directed toward the preservation of preoperative condylar position during orthognathic surgery because their positional change may leads to postoperative skeletal relapse as well as TM joint problem. Various condylar positioning devices, therefore, have been introduced and utilized in orthognathic surgery. Even though most of them provided us with improvement of surgical results, we also found some problems including limited indication, etc. For more accurately repositioning the maxilla and the mandible and its wide versatility, a newly designed maxilla and condylar positioning device based on the fixed part of cranium is introduced.

  • PDF

A Study on how to Utilize the DR System using Assistive Devices (보조기구를 이용한 DR System 활용 방법에 대한 연구)

  • Seon-Yeol, Seo;Jeong-Ho, Kim;Jin-Ok, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.115-122
    • /
    • 2023
  • The hip joint device is an important immobilization device for internal rotation in the diagnosis of bone density test, microfracture, and arthritis. These fixing mechanisms have limitations in maintaining reproducibility due to the use of Velcro. In this study, we developed an improved hip joint device and evaluated its usefulness. For 30 students enrolled in the Department of Radiology, we evaluated the reproducibility through medical imaging and the time required for positioning by applying the conventionaling and improved device. Changes over time were also evaluated. As a result, compared to the conventional device, the improved device showed a 32% reduction in positioning time and improved reproducibility by about 6.2 times. As for the amount of change over time, the positioning time increased in the conventional device, but decreased in the improved device, and the reproducibility of the conventional device was lower than that of the improved device. Through this, it can be said that the use of the improved device improved the image quality and reduced the radiologist's workload.