• 제목/요약/키워드: Positioning Data

검색결과 1,455건 처리시간 0.024초

지진 및 지각변동 감지를 위한 정밀절대측위 솔루션 개발 (Development of Precise Point Positioning Solution for Detection of Earthquake and Crustal Movement)

  • 박준규;김민규
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4587-4592
    • /
    • 2013
  • GPS는 측량, 지도제작 및 항법 이외에도 고정밀 측위에 의한 세계기준좌표계 설정, 지구 자전축의 회전계수 결정, 지진 및 지각변동 감지 등과 같은 지구과학 분야의 필수적인 방법으로 인식되고 있다. 그러나 정밀 해석결과를 얻기 위해서는 자료처리를 위한 전문지식과 비용 투자가 필요하므로, 사용자들이 손쉽게 결과를 획득할 수 있는 방안이 필요하다. 이에 본 연구에서는 비전문가도 정밀절대측위 방법으로 GPS 자료처리가 가능한 정밀절대측위 솔루션을 개발하고자 하였다. 연구를 통해 자료처리에 필요한 최소 정보만을 입력함으로써 사용자의 편의성을 크게 향상시킨 솔루션을 개발하였다. 또한 국토지리정보원에서 제공하는 위성기준점의 관측자료를 정밀절대측위로 처리하여, 지각변동 속도를 산출하고, ITRF에서 제공하는 지각변동 속도와 비교를 통해 정밀절대측위 솔루션을 이용한 지진 및 지각변동 감지가 가능함을 제시하였다.

Precise Point Positioning using the BeiDou Navigation Satellite System in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권2호
    • /
    • pp.73-77
    • /
    • 2015
  • Global Positioning System (GPS) Precise Point Positioning (PPP) has been extensively used for geodetic applications. Since December 2012, BeiDou navigation satellite system has provided regional positioning, navigation and timing (PNT) services over the Asia-Pacific region. Recently, many studies on BeiDou system have been conducted, particularly in the area of precise orbit determination and precise positioning. In this paper PPP method based on BeiDou observations are presented. GPS and BeiDou data obtained from Mokpo (MKPO) station are processed using the Korea Astronomy and Space Science Institute Global Navigation Satellite System (GNSS) PPP software. The positions are derived from the GPS PPP, BeiDou B1/B2 PPP and BeiDou B1/B3 PPP, respectively. The position errors on BeiDou PPP show a mean bias < 2 cm in the east and north components and approximately 3 cm in the vertical component. It indicates that BeiDou PPP is ready for the precise positioning applications in the Asia-Pacific region. In addition, BeiDou tropospheric zenith total delay (ZTD) is compared to GPS ZTD at MKPO station. The mean value of their difference is approximately 0.52 cm.

유연힌지형 정밀스테이지의 모델링 및 진동제어 (Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism)

  • 김재익;황윤식;김영식;김인수;김기범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

NC 공작기계의 운동정도 측정에 관한 연구(제1보) - NC 선반의 직선 사이클 위치결정정도 측정에 관하여 - (A Study on Measuring of Motion Accuracy of NC Machine Tools(No.1) -about Measuring of Linear Cycle Positioning Accuracy of NC Lathe)

    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.82-88
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of NC lathes as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of x or z-axis directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper , measuring systems are organized to measure linear displacement of ATC(Automatic tool changer) of NC lathe using laser interferometer, magnescale and tick pulses coming out from computer in order to get data at constant time intervals from the sensors, And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

  • PDF

Analysis of Outdoor Positioning Results using Deep Learning Based LTE CSI-RS Data

  • Jeon, Juil;Ji, Myungin;Cho, Youngsu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.169-173
    • /
    • 2020
  • Location-based services are used as core services in various fields. In particular, in the field of public services such as emergency rescue, accurate location estimation technology is very important. Recently, the technology of tracking the location of self-isolation subjects for COVID-19 has become a major issue. Therefore, location estimation technology using personal smart devices is being studied in various ways, and the most widely used method is to use GPS. Other representative methods are using Wi-Fi, Pedestrian Dead Reckoning (PDR), Bluetooth Low Energy (BLE) beacons, and LTE signals. In this paper, we introduced a positioning technology using deep learning based on LTE Channel State Information-Reference Signal (CSI-RS) data, and confirmed the possibility through an outdoor location estimation experiment using a commercial LTE signal.

텔레매틱스 응용을 위한 다중센서통합의 이중 접근구조 (Bimodal Approach of Multi-Sensor Integration for Telematics Application)

  • 김성백;이승용;최지훈;장병태;이종훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2003
  • In this paper, we present a novel idea to integrate low cost Inertial Measurement Unit(IMU) and Differential Global Positioning System (DGPS) for Telematics applications. As well known, low cost IMU produces large positioning and attitude errors in very short time due to the poor quality of inertial sensor assembly. To conquer the limitation, we present a bimodal approach for integrating IMU and DGPS, taking advantage of positioning and orientation data calculated from CCD images based on photogrammetry and stereo-vision techniques. The positioning and orientation data from the photogrammetric approach are fed back into the Kalman filter to reduce and compensate IMU errors and improve the performance. Experimental results are presented to show the robustness of the proposed method that can provide accurate position and attitude information for extended period for non-aided GPS information.

  • PDF

NC 공작기계의 운동정도 측정에 관한 연구(제2보) -머시닝 센터의 직선 사이클 위치결정정도 측정에 관하여- (A study on Measuring of Motion Accuracy of NC Machine Tools(No. 2) - about Measuring of Linear Cycle Positioning Accuracy of Machining Center -)

  • 김영석
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.51-51
    • /
    • 1998
  • It is very important to test linear cycle positioning accuracy of Machining centers as it affect all other machines machined by them in industries. For example, if the linear positioning accuracy of each axes directions is bad, the size of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, measuring systems are organized to measure linear displacements of table or spindle of machine center using laser interferometer, magnescale and tick pulses comming out from computer in order to get data at constant time intervals from the sensors. And each set of data gotten from test is expressed to a plots by computer treatment and the results of linear positioning error motion is estimated to numerics by statistical treatments.

A Bimodal Approach for Land Vehicle Localization

  • Kim, Seong-Baek;Choi, Kyung-Ho;Lee, Seung-Yong;Choi, Ji-Hoon;Hwang, Tae-Hyun;Jang, Byung-Tae;Lee, Jong-Hun
    • ETRI Journal
    • /
    • 제26권5호
    • /
    • pp.497-500
    • /
    • 2004
  • In this paper, we present a novel idea to integrate a low cost inertial measurement unit (IMU) and Global Positioning System (GPS) for land vehicle localization. By taking advantage of positioning data calculated from an image based on photogrammetry and stereo-vision techniques, errors caused by a GPS outage for land vehicle localization were significantly reduced in the proposed bimodal approach. More specifically, positioning data from the photogrammetric approach are fed back into the Kalman filter to reduce and compensate for IMU errors and improve the performance. Experimental results are presented to show the robustness of the proposed method, which can be used to reduce positioning errors caused by a low cost IMU when a GPS signal is not available in urban areas.

  • PDF