• Title/Summary/Keyword: Position determining system

Search Result 166, Processing Time 0.026 seconds

Case Study on Developing an Elderly Automatic Shower System

  • Kim, Jong-Hyun;Hong, Jae-Soo;Chun, Keyoung-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • Objective: The aim of this study is developing an elderly automatic showering system by optimizing nozzle position and angle of water injection on ergonomics approach. Background: The elderly living in nursing home or hospital were increased by an aging population. Helping the elderly on showering is so hard. In addition, the existing showering/bathing systems are not effective because shower pattern of the elderly and washed range of nozzle were not considered. Method: Firstly, basic specification were determined by anthropometric approach. Secondly, position of nozzle and angle of water injection were determined through observation of elderly behavior on showering. And, finally, they were optimized by washing test and showering simulation. Results: On showering importance of body parts were able to analysis through observation of elderly behavior. The position of nozzle and angle of water injection was able to optimize by showering simulation. The automatic showering system was developed by considering their results. Conclusion: The most important technology of developing a showering system is the determining position of nozzle and angle of water injection, number of nozzle. It was developed by applying its results through user centered-research. Application: The user centered-research of developing products was able to apply directly to develop automatic bath, showering products etc. Further more it was available to apply senior friendly products.

Development on the Auto Showering System Concerning Bed Type for the Elderly: Focusing on Nozzle Optimization

  • Hong, Jae-Soo;Kim, Jong-Hyun;Chun, Keyoung-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.389-396
    • /
    • 2012
  • Objective: The aim of this study is to design an auto showering system regarding bed type for old people or bedridden patients. Background: The rapid growth concerning the aging population leads to an increase in elderly bedridden patients living in senior care centers and hospitals where care givers have difficulty bathing older people with limited mobility. Method: In this study, a showering equipment for experiment was based on anthropometric and researching existing products. The nozzle position was optimized by showering tests and simulations using showering equipment. Results: The problems regarding the existing products were analyzed and the nozzle position was optimized through showering tests. The number, position, and spraying angle of the nozzle were optimized through showering simulations. The automatic showering system concerning bed type was designed by considering their results. Conclusion: When designing an automatic showering system, the most important design element involves determining the position of nozzle and angle of water injection and the number of nozzles. The system was developed by applying the results through user centered-research. Application: The user centered-research for developing products was applied directly in order to develop automatic baths, showering products etc. Furthermore, it was also available to be applied towards senior friendly products.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

An Algorithm for Adjusting Inserting Position and Traveling Direction of a Go-No Gauge Inspecting Eggcrate Assemblies (에그크레이트 검사를 위한 Go-No 게이지의 삽입위치 및 이동방향 보정 알고리즘)

  • 이문규;김채수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.152-158
    • /
    • 2003
  • A machine-vision guided inspection system with go-no gauges for inspecting eggcrate assemblies in steam generators is considered. To locate the gauge at the right place, periodic corrective actions for its position and traveling direction are required. We present a machine vision algorithm for determining inserting position and traveling direction of the go-no gauge. The overall procedure of the algorithm is composed of camera calibration, eggcrate image preprocessing, grid-height adjustment, intersection point estimation between two intersecting grids, and adjustment of position and traveling direction of the gauge. The intersection point estimation is performed by using linear regression with a constraint. A test with a real eggcrate specimen shows the feasibility of the algorithm.

Design of a Two-dimensional Attitude Determining GPS Receiver (이차원 자세 측정용 GPS 수신기 설계)

  • 손석보;박찬식;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • A design of CPS attitude determination system is described in this paper. The designed system is a low cost high precision 24 channel single frequency GPS(Global Positioning System) receiver which provides a precise absolute heading and pitch (or roll) as well as a position. It uses commercial chip-set and consists of two RF parts, two signal-tracking parts, a processor, memory parts and I/Os. In order to determine precise attitude, accurate carrier phase measurements and an efficient integer ambiguity resolution method are required. To meet these requirements, a PLL (Phase Locked Loops) is designed, and an algorithm called ARCE (Ambiguity Resolution with Constraint Equation) is adopted. The hardware and software structure of the system will be described, and the performance evaluated under various conditions will be presented. The test results will promise that more reliable navigation system be possible because the system provides all navigational information such as position, velocity, time and attitude.

  • PDF

Step size determination method using neural network for personal navigation system (개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

Developing Head/Eye Tracking System and Sync Verification (헤드/아이 통합 트랙커 개발 및 통합 성능 검증)

  • Kim, Jeong-Ho;Lee, Dae-Woo;Heo, Se-Jong;Park, Chan-Gook;Baek, Kwang-Yul;Bang, Hyo-Choong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.90-95
    • /
    • 2010
  • This paper describes the development of integrated head and eye tracker system. Vision based head tracker is performed and it has 7mm error in 300mm translation. The epi-polar method and point matching are used for determining a position of head and rotational degree. High brightness LEDs are installed on helmet and the installed pattern is very important to match the points of stereo system. Eye tracker also uses LED for constant illumination. A Position of gazed object(3m distance) is determined by pupil tracking and eye tracker has 1~5 pixel error. Integration of result data of each tracking system is important. RS-232C communication is applied to integrated system and triggering signal is used for synchronization.

Study on optimized positioning of radio communication equipment and roaming algorithm for CBTC (CBTC를 위한 고속로밍 알고리즘과 무선통신장비의 위치 최적화 연구)

  • Kim Yun-Bae;Lee Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.275-281
    • /
    • 2005
  • In this paper, a new algorithm is proposed for high speed roaming in an Intelligent Train Control System(ITCS) and study on optimized positioning of radio communication equipment. A DCS(Data Communication System) which is a main part of CBTC(Communication Based Train Control) system, is consisted of radio based wireless communication system and wired optical system. In the radio based wireless communication, the position of AP enclosures and antennas shall be optimized for the guaranteed communication channel between wayside and trains both in open aired and tunnelled area. Also a communication channel established between wayside and train shall be maintained while train moves at its maximum speed. This study shows the way of determining the optimal position for the railway side communication equipment in Bundang Line and how to achieve continuous communicating channel for tracking and controlling train.

  • PDF

Feasibility Study of Source Position Verification in HDR Brachytherapy Using Scintillating Fiber

  • Moon, Sun Young;Jeong, EunHee;Lim, Young Kyung;Chung, Weon Kyu;Huh, Hyun Do;Kim, Dong Wook;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • The position verification of the radiation source utilized in brachytherapy forms a critical factor in determining the therapeutic efficiency. Currently, films are used to verify the source position; however, this method is encumbered by the lengthy time interval required from film scanning to analysis, which makes real-time position verification difficult. In general, the source position accuracy is usually tested in a monthly quality assurance check. In this context, this study investigates the feasibility of the real-time position verification of the radiation source in high dose rate (HDR) brachytherapy with the use of scintillating fibers. To this end, we construct a system consisting of scintillating fibers and a silicon photomultiplier (SiPM), optimize the dosimetric software setup and radiation system characteristics to obtain maximum measurement accuracy, and determine the relative ratio of the measured signals dependent upon the position of the scintillating fiber. According to the dosimetric results based on a treatment plan, in which the dwell time is set at 30 and 60 s at two dwell positions, the number of signals is 31.5 and 83, respectively. In other words, the signal rate roughly doubles in proportion to the dwell time. The source position can also be confirmed at the same time. With further improvements in the spatial resolution and scintillating fiber array, the source position can be verified in real-time in clinical settings with the use of a scintillating fiber-based system.

Application of Computer Vision System for the Point Position Determination in the Plane (평면상에 있는 점위치 결정을 위한 컴퓨터장 비젼의 응용)

  • 장완식;장종근;유창규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1124-1128
    • /
    • 1995
  • This paper presents the appplication of computer vision for the purpose of determing the position of the unknown point in the plane. The presented contrik method is estimate the six view parameters reqresenting the relationship between the image plane coordinates and the real physical coordinates. The estimation of six parameters is indispensable for transforming the 2-dimensional camera coordinates to the 3-dimensional spatial coordinates. Then, the position of unknown point is estimated based on the estimated parameters depending on the cameras. The suitability of this control scheme is demonstrated experimentally by determining of position the unknown point in the plane.

  • PDF