• Title/Summary/Keyword: Position compensation

Search Result 637, Processing Time 0.025 seconds

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상)

  • Do-Hyun, Kim;Sang-Hoon, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

A Study on the Position Compensation of a Mobile Robot Using 2D Position Sensitive Detector (2차원 PSD 를 이용한 이동로보트의 위치 보정에 관한 연구)

  • Ro, Young-Shick;Lee, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.833-836
    • /
    • 1995
  • The Position Sensitive Detector(PSD) is an useful which can be used to measurement the position of an incidence light in detail and in real-time. In this paper, light sources, to be predefinded positions, are used as landmarks and the 2-D PSD signals are used to compensate the position of a running mobile robot. To induce the position compensation algorithm, first, we inspect the error factor, make the error model, and evaluate the error covariance matrix between the real position and estimated position in dead reckoning system. Next we obtain an optimal position compensation algorithm to update the estimated position using extended Kalman filler by the relation of the external light position and it's PSD signal. Through the simulation of navigating a robot the effectiveness of the proposed method is confirmed.

  • PDF

Performance Improvement of Map Matching Using Compensation Vectors (보정벡터를 이용한 맵 매칭의 성능 향상)

  • Ahn Do-Rang;Lee Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.97-103
    • /
    • 2005
  • Most car navigation systems(CNS) estimate the vehicle's location using global positioning system(GPS) or dead reckoning(DR) system. However, the estimated location has undesirable errors because of various noise sources such as unpredictable GPS noises. As a result, the measured position is not lying on the road, although the vehicle is known to be restricted on the road network. The purpose of map matching is to locate the vehicle's position on the road network where the vehicle is most likely to be positioned. In this paper, we analyze some general map matching algorithms first. Then, we propose a map matching method using compensation vectors to improve the performance of map matching. The proposed method calculates a compensation vector from the discrepancy between a measured position and an estimated position. The compensation vector and a newly measured position are to be used to determine the next estimation. To show the performance improvement of the map matching using compensation vectors, the real time map matching experiments are performed. The real road experiments demonstrate the effectiveness and applicability of the proposed map matching.

Development of Mounting System for MLAG Chip using Vision (Vision을 이용한 MLGA Chip 장착시스템 개발)

  • 노병옥;강판식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.661-665
    • /
    • 2000
  • In this study, the control of mounting system for MLGA package was developed using machine vision for the control of rotating position compensation and mounting position of X-Y table. Two type of material (polymer, alumina )were used for the dielectric insulator of the MLGA. And the illumination system and the algorithm of position compensation that be suitable for these materials was developed. Also, the position control order that compensated by machine vision actuated to micro stepping motor and X-Y servo motor by controlled PC and mounted the MLGA on PCB in resolution to$\pm10\mum$ .

  • PDF

Position/Force Control of Robotic Manipulator with Fuzzy Compensation (퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF

Compensation Characteristics Dependence on the Position of Optical Phase Conjugator in 320 Gbps WDM System

  • Lee Seong-Real;Yim Hwang-Bin
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.4
    • /
    • pp.162-167
    • /
    • 2004
  • In this paper, optimal position of optical phase conjugator(OPC) for best compensating distorted WDM channels due to both chromatic dispersion and self phase modulation(SPM) is numerically investigated, and the compensation characteristics of overall WDM channels at this position is investigated, comparing with that in case of OPC placed at mid-way of total transmission length. It is confirmed that the compensation extents in WDM system with OPC is more improved by the shifting OPC position from the mid-way of total transmission length. And, we confirmed that the optimal position of OPC must be selected to the position decreasing not only eye opening penalty(EOP) of overall WDM channels but also EOP deviation between WDM channels, and this OPC position should be altered as various system parameters such as modulation format, and fiber dispersion, etc. Using proposed configuration, it is possible to remove all in-line dispersion compensator, reducing span losses and system costs.

The Compensation of Machine Vision Image Distortion

  • Chung, Yi-Chan;Hsu, Yau-Wen;Lin, Yu-Tang;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.5 no.1
    • /
    • pp.68-84
    • /
    • 2004
  • The measured values of a same object should remain constant regardless of the object's position in the image. In other words, its measured values should not vary as its position in the image changes. However, lens' image distortion, heterogeneous light source, varied angle between the measuring apparatus and the object, and different surroundings where the testing is set up will all cause variation in the measurement of the object when the object's position in the image changes. This research attempts to compensate the machine vision image distortion caused by the object's position in the image by developing the compensation table. The compensation is accomplished by facilitating users to obtain the correcting object and serves the objective of improving the precision of measurement.

Vision based MLGA Chip Mounting System (Vision을 이용한 MLGA Chip 장착시스템 개발)

  • No, Byeong-Ok;Yu, Yeong-Gi;Kim, An-Sik;Kim, Yeong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.161-167
    • /
    • 2001
  • In this study, the control of mounting system for MLGA package was developed using machine vision for the control of rotation position compensation and mounting position of X-Y table. Two types of materials, polymer and alumina, were used for the dielectric insulator of the MLGA. The illumination system and the algorithm of position compensation which is suitable for these materials was developed. We found that the mounting accuracy enough to the degree of${\pm}10{\mu}m$ when MLGA was mounted on the PCB.

  • PDF